APM8X03: Relativity A – Final Exam

- Attempt **ALL** questions
- This paper has 100 marks available. Full Marks =90 marks
- You have 4 hours

SECTION 1: Vectors and Tensors

[35 marks]

(a) Consider the following coordinate system

 $x = a \cosh u \cos v \cos \phi, \ y = a \cosh u \cos v \sin \phi, \ z = a \sinh u \sin v$

- $u \ge 0, \ 0 \le v \le \pi, \ 0 \le \phi \le 2\pi$
- 1. Plot the ϕ -curves for a = 1. Let 0 < u < 1. (4 marks)
- 2. Plot the *v*-surfaces for a = 1. Let 0 < u < 1. (4 marks)
- 3. Find the basis vectors for the system. (3 marks)
- 4. Find the basis covectors for the system. (3 marks)
- 5. Find the metric tensor for the system. (6 marks)
- (b) If F^{ij} is an antisymmetric tensor and T_{ij} is a symmetric tensor, show that the $F^{ij}T_{ij} = 0$ for any such two tensors. (5 marks)
- (c) Show that the inner product of two tensors A^{ij} and B_{ij} such that $C^i_j = A^{ik}B_{kj}$, is itself, a tensor. (5 marks).
- (d) Show that, in a 2-dimensional space, the tensor $G_{\mu\nu} = R_{\mu\nu} \frac{1}{2}Rg_{\mu\nu}$ is traceless. Hint: R is the trace of $R_{\mu\nu}$. (5 marks)

SECTION 2: Lorentz Transformations

(a) Consider a frame \overline{S} moving along the z-axis with speed V relative to S. If a particle in S has the 3-velocity $v = \{v_x, v_y, 0\}$, answer the following:

1. Find the components of the 3-velocity in S .	(5 marks)
2. Find an expression for the magnitude of the 3-velocity in \overline{S} and the limit as $V \to c$.	d comment on (3 marks)
3. Comment on the angle that the particle moves in the $x - y$ pla \overline{S} .	ane relative to (2 marks)
Consider an observer S at the entrance of a 25m long garage and a set \bar{S} driving a 100m long limousine at a speed of 0.99c toward the garage	
1. What length does S see for the limo?	(2 marks)
1. What length does S see for the limo? 2. What depth does \overline{S} see for the garage?	(2 marks) (2 marks)
_	(2 marks) ith the garage

5. Discuss the order of the events in each frame. (5 marks)

SECTION 3: Special Relativity

(b)

- 1. A photon collides (head on) with a meson at rest. The meson decays into a quark and an antiquark which scatter off the line of collision with angles θ and ϕ respectively. They have velocities given by v_1 and v_2 and masses m_1 and m_2 respectively. Answer the following:
 - 1.1. Draw a detailed diagram describing the collision. (4 marks)

1.2. Show that an expression for the angle between the emergent particles is given by

$$\cos(\theta + \phi) = \frac{c^2 \left(m_1^2 + 2\gamma_1 \gamma_2 m_2 m_1 + m_2^2\right) - m \left(c^2 m + 2h\nu\right)}{2\gamma_1 \gamma_2 m_1 m_2 v_1 v_2}$$

where γ_1 and γ_2 are the respective Lorentz factors.

(6 marks)

[20 marks]

[35 marks]

2. An observer \bar{S} sets up an electric field E so that the electromagnetic tensor in the frame is given by

$$\bar{F}^{\mu\nu} = \begin{pmatrix} 0 & 0 & -\frac{E_y}{c} & 0\\ 0 & 0 & 0 & 0\\ \frac{E_y}{c} & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{pmatrix}$$

3.1 If \overline{S} moves relative to S with speed V, calculate $F^{\mu\nu}$. (5 marks)

3.2 Given the general structure of the electromagnetic tensor, comment on what S observes in terms of magnetic and electric fields. (5 marks)

Useful Information

$$\begin{split} \bar{T}^{\alpha\beta}{}_{\lambda\sigma} &= \bar{x}^{\alpha}_{,\epsilon} \bar{x}^{\beta}_{,\rho} x^{\eta}_{,\lambda} x^{\phi}_{,\sigma} T^{\epsilon\rho}{}_{\eta\phi} \\ \gamma &= \frac{1}{\sqrt{1 - \frac{V^2}{c^2}}} \\ x^{\mu} &= \{t, x, y, z\} \\ \Lambda^{\alpha}{}_{\beta} &= \begin{pmatrix} \gamma & 0 & 0 & -\beta\gamma \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -\beta\gamma & 0 & 0 & \gamma \end{pmatrix} \\ ds^2 &= -c^2 dt^2 + dx^2 + dy^2 + dz^2 &= -c^2 d\bar{t}^2 + d\bar{x}^2 + d\bar{y}^2 + d\bar{z}^2 \\ u^{\mu} &= \frac{dx^{\mu}}{d\tau}, \ u^{\mu}u_{\mu} &= -c^2 \\ P^{\mu} &= mu^{\mu} \\ A^{\mu}A_{\mu} \begin{cases} \leq 0 & \text{timelike} \\ = 0 & \text{lightlike} \\ \geq 0 & \text{spacelike} \end{cases} \\ F^{\mu\nu} &= \begin{pmatrix} 0 & -\frac{E_x}{c} & -\frac{E_y}{c} & -\frac{E_z}{c} \\ \frac{E_x}{c} & 0 & -B_z & B_y \\ \frac{E_y}{c} & B_z & 0 & -B_x \\ \frac{E_x}{c} & -B_y & B_x & 0 \end{pmatrix} \end{split}$$