Assessor: Prof F. Nyabadza
Moderator: Dr R. Ouifki
Duration: Online

Marks:
100

Question Number	Marks Awarded
1	
2	
3	
4	
5	
6	
7	
8	
TOTAL:	

APPLIED MATHEMATICS

Dynamical Systems A APM8X01
Examination: 11/06/2020

Name: \qquad Student Number:

Instructions:

1. Check that this question paper consists of 2 pages in total.
2. All calculations must be shown.
3. Pocket calculators are permitted.

Question 1 [6 marks]

Find the fixed orbits of

$$
f(x)=-x^{5}
$$

Question 2 [6 marks]
Perform complete orbit analysis of

$$
f(x)=x-x^{2}
$$

Question $3 \quad$ [17 marks]
Let $g(x)=|x-a|$
(a) Compute $g^{2}(x)$ and $g^{3}(x)$.
(b) Find all the fixed points of $g(x)$.
(c) How many periodic orbits does $g(x)$ have if $a=1$, if any?

Question 4 [15 marks]
Given that

$$
\begin{equation*}
x_{n+1}=\alpha x_{n}+\beta \tag{*}
\end{equation*}
$$

(a) Find the steady state(s) and state the condition under which the steady state exists.
(b) Show that $y_{n}=x_{n}-x^{*}$ transforms $(*)$ into a homogeneous linear equation.
(c) Use the result in (b) to find the general solution of (*)

Question 5 [16 marks]
A population model is given by

$$
\begin{equation*}
\frac{d N}{d t}=f(N)=\alpha N e^{-\beta N}, \quad \alpha, \beta>0 \tag{4}
\end{equation*}
$$

(a) What could be the possible interpretation of α and β,, justifying your answers?
(b) Sketch $f(N)$ against N.
(c) Find the steady states and determine their stabilities.

Question 6 [10 marks]
Given that

$$
\begin{equation*}
\frac{d x}{d t}=x\left(r-e^{x}\right) \tag{5}
\end{equation*}
$$

(a) Find the steady states.
(b) Draw the bifurcation diagram.
(c) What type of bifurcation is exhibited?

Question 7 [14 marks]

A model with 3 phenotypes has the probability of getting the dominant alleles in the next generation given by the following map

$$
\begin{equation*}
f_{n+1}=f\left(P_{n}\right)=\frac{(\alpha-\beta) p_{n}^{2}+\beta p_{n}}{(\alpha-2 \beta+\gamma) p_{n}^{2}-2(\alpha-\beta) p_{n}+\gamma} . \tag{8}
\end{equation*}
$$

(a) Show that the map has three steady states.
(b) Using cobwebbing to determine the stabilities of the steady states for the case $\beta>\alpha, \gamma$.

Question 8 [16 marks]
Consider the Nicholson and Bailey model, for a host-parasitisoid interaction given by

$$
\begin{align*}
& H_{n+1}=k H_{n} e^{-a P_{n}} \\
& P_{n+1}=c H_{n}\left(1-e^{-a P_{n}}\right) \tag{6}
\end{align*}
$$

(a) Find the steady states of the system of equations.
(b) Find the Jacobian matrix at the non-trivial steady state.
(c) Use the Jurry conditions to prove the stability of the non- trivial steady state.

