```
Assessor: Prof F. Nyabadza
Moderator: Dr R. Ouifki
Duration: 2 Hours
Marks: 100
```

Question Number	Marks Awarded
1	
2	
3	
4	
5	
6	
7	
8	
TOTAL:	

Question 1 [13 marks]
Consider

$$
\begin{equation*}
I\left(x, y, y^{\prime}\right)=\int_{0}^{\pi}\left(e^{x} y^{\prime}-x y y^{\prime}-\frac{\left(y^{\prime}\right)^{2}}{2}\right) d x \tag{10}
\end{equation*}
$$

(a) Find $y^{*}(x)$, the extremum, subject to the boundary conditions

$$
\begin{equation*}
y(0)=\frac{1}{2}, y^{\prime}(0)=\frac{3}{2} \tag{3}
\end{equation*}
$$

(b) Apply the Legendre test to classify the extremum.

Question 2 [10 marks]
Given that

$$
I\left(y, y^{\prime}\right)=\int_{1}^{3}(y-1)\left(y^{\prime}\right)^{2} d x
$$

(a) Show that the Euler-Langrange equation reduces to

$$
\begin{equation*}
\frac{d u}{d y}=\frac{u}{2(1-y)} \tag{5}
\end{equation*}
$$

(b) Use the boundary conditions

$$
\begin{gather*}
y(1)=2 \tag{5}\\
y(3)=1+\sqrt[3]{9}
\end{gather*}
$$

to determine the extremum of $y(x)$ for the positive constants of integration.
Question 3 [18 marks]
Given that

$$
\begin{gather*}
I=\int_{0}^{L} \frac{\sqrt{1+y^{\prime 2}}}{h-y} d x \\
y(0)=y(L)=0 \tag{8}
\end{gather*}
$$

(a) Use the Beltrami identity in (a) to show that

$$
y^{\prime}=\sqrt{\frac{C_{1}-(h-y)}{h-y}} .
$$

(b) Show that the solution of (b) is a set of parametric equations

$$
\left\{\begin{array}{l}
x=\frac{K_{1}}{2}(\theta-\sin \theta)+K_{2}, \tag{10}\\
y=h-\frac{K_{1}}{2}(1-\cos \theta)
\end{array}\right.
$$

where K_{1} and K_{2} are positive constants.

Question 4 [10 marks]
Use the Method of Lagrange Multipliers to find the optimal distance between the curve

$$
x_{2}^{2}+\left(2 x_{1}+3\right)^{2}=1
$$

and the point $(-2 ; 0)$ corresponding to $x_{2}>0$.
Question 5 [15 marks]
Consider the function

$$
f(x)=f\left(x_{1}, x_{2}\right)=\left(a x_{1}^{2}-1\right)\left(b x_{2}+3\right) ;
$$

where $a, b>\frac{1}{2}$. Given that $\nabla_{x} f=\binom{20}{3}$ at $\left(x_{1}, x_{2}\right)=(2 ; 2)$.
(a) Determine a and b.
(b) Hence, find both critical points of $f(x)$
(c) Classify the points in (b) by considering the eigenvalues of the Hessian H_{f}

Question 6 [10 marks]
If the Linear Programming Problem (LPP),

$$
\operatorname{maximize} f(x)=c_{1} x_{1}+c_{2} x_{2}
$$

subject to

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2} \leq b_{1} \\
& a_{21} x_{1}+a_{22} x_{2} \leq b_{2}
\end{aligned}
$$

with $x_{1} \geq 0 x_{2} \geq 0$, and $b_{1} b_{2} \geq 0$ has an initial tableau

x_{1}	x_{2}	s_{1}	s_{2}	f	
$\frac{5}{2}$	1	$\frac{1}{5}$	0	0	$\frac{4}{5}$
$\frac{26}{5}$	0	$\frac{3}{5}$	1	0	$\frac{22}{5}$
$-\frac{11}{5}$	0	$\frac{5}{2}$	0	1	$\frac{8}{5}$

after one iteration of the Simplex Method, determine the various parameters in the LP.

Hence, solve the LP.
Question 7 [10 marks]
(a) Find the locations and values of the extrema of $\left(x, y \in \mathbb{R}^{+}\right)$

$$
\begin{equation*}
f(x, y)=e^{x y} \tag{5}
\end{equation*}
$$

subject to $x^{2}+y=1$.
(b) Find the locations and values of the minima of $(x, y \in \mathbb{R})$

$$
\begin{equation*}
f(x, y)=\sin (x+y) \tag{5}
\end{equation*}
$$

subject to $(x+y)^{2} \leq \frac{\pi^{2}}{4}$.
Hint: Remember that $\cos x$ is an even function.

Question 8 [14 marks]
Maximize

$$
J=\int_{0}^{2}\left(2 x-3 u-u^{2}\right) d t
$$

subject to $\frac{d x}{d t}=x+u$ and $x(0)=5$ and $u \in[0,2]$.
(a) Write down the Hamiltonian, H.
(b) Show that

$$
\begin{equation*}
u(t)=\frac{\lambda(t)-3}{2} \tag{2}
\end{equation*}
$$

(c) From one of the adjoint equations, show that

$$
\lambda(t)=2 e^{2-t}-1 .
$$

(d) Show that the optiml control u^{*} is given by

$$
u^{*}= \begin{cases}2 & \text { if } \quad e^{2-t}>4.5 \tag{5}\\ e^{2-t}-2.5 & \text { if } \quad 0<e^{2-t} \leq 4.5 \\ 0 & \text { if } \quad e^{2-t}<2.5\end{cases}
$$

