

PROGRAMBACCALAUREUS TECHNOLOGIAE
CHEMICAL ENGINEERINGSUBJECTCHEMICAL ENGINEERING
TECHNOLOGY IV (HEAT AND

MASS)

CODE WARC432

DATE MID YEAR EXAMINATION July 2019

DURATION 3HRS (X-PAPER) 08:30 – 11:30

 TOTAL MARKS
 119

 FULL MARKS
 119

EXAMINERS	Prof M Belaid & Dr R Huberts	
MODERATOR	Prof R Mbaya	2366C
NUMBER OF PAGES	13	
INSTRUCTIONS	NON-PROGRAMMABLE CALCULA PERMITTED (ONLY ONE PER CANI ANSWER ALL THE QUESTIONS.	

QUESTION 1

- 1.1. Show that $A_2F_{21} = A_1F_{12}$ for two infinitely large parallel flat surfaces of unequal size.
- 1.2. A round black body ball of diameter 0.1m at an initial temperature of 527°C is suspended in the centre of a spherical oven of diameter 1m, filled with air at a temperature of 677°C and lined on the inside with brick at a temperature of 1027°C. The brick lining exhibits the same non-grey body characteristics as kaolin. Calculate the *net* radiation heat transfer *to* the ball. Show view factors in your calculations.

(15) [21]

Steam

Water

[53]

QUESTION 2

Steam at 1 atmosphere needs to condense at a rate of 0.001kgs⁻¹ on the outside of a tube with inside and outside diameter of 0.10m and 0.12m respectively and length 2m. The (turbulent) water flowing inside the tube is at 330K (average T_m) to provide the cooling, and the thermal resistance of the pipe is negligible.

- 2.1. What should the temperature of tube surface be? (35)
- 2.2. What should the Reynold's number (Re) of the cooling water inside the tube be to ensure such a surface temperature? (18)

QUESTION 3

A flat slab of naphthalene of dimensions $20 \text{cm} \times 10 \text{cm} \times 1 \text{cm} (1 \times b \times t)$ is exposed at the top to (fresh) air flowing at 12ms^{-1} . The MW naphthalene = 128.16gmol^{-1} , and the vapour pressure of naphthalene for the operating conditions (Total pressure = 1 atm and 27°C) is 11.9Pa, with

 $D_{AB}=0.62 \times 10^{-5} m^2 s^{-1}$. Mass transfer from the ends of the slab may be neglected.

- 3.1. Draw a diagram of the naphthalene concentration profile above the plate.(10)
- 3.2. Estimate the mass loss (g) of naphthalene after 24 hours of exposure to the air. (35)

[45]
TOTAL MARKS = 119
FULL MARKS = 119

2/..

(6)

DATA SHEETS

Lengths, areas and volumes:

Circumference of a circle πd

Area of a cylinder π dL

Area of a circle $\pi d^2/4$

800K

Surface area of a sphere πd^2

Volume of a sphere $\pi d^3/6$

Absorbtivity and emissivity of Kaolin
insulating brick:

ε = 0.70

Thermal conductivity of Kaolin insulating brick:

2Wm⁻¹K⁻¹

1200K	ε = 0.57	
1400K	ε = 0.47	٤ = ٢
16002		-

2	3 =	(T)	and	α	=	8	(T)
1	1	. 1		1		1	2

TABLE A.4 Thermophysical Properties of Gases at Atmospheric Pressure^a

(K) (kg/m³) (kJ/kg · K) (Air 100 3.5562 1.032 150 2.3364 1.012 200 1.7458 1.007 250 1.3947 1.006 300 1.1614 1.007 350 0.9950 1.009 400 0.8711 1.014	$\frac{71.1}{103.4}$ 132.5 159.6 184.6 208.2 230.1	2.00 4.426 7.590 11.44 15.89 20.92	9.34 13.8 18.1 22.3 26.3	2.54 5.84 10.3 15.9 22.5	0.786 0.758 0.737 0.720 0.707
150 2.3364 1.012 200 1.7458 1.007 250 1.3947 1.006 300 1.1614 1.007 350 0.9950 1.009	103.4 132.5 159.6 184.6 208.2	4.426 7.590 11.44 15.89	13.8 18.1 22.3	5.84 10.3 15.9	0.758 0.737 0.720
150 2.3364 1.012 200 1.7458 1.007 250 1.3947 1.006 300 1.1614 1.007 350 0.9950 1.009	103.4 132.5 159.6 184.6 208.2	4.426 7.590 11.44 15.89	13.8 18.1 22.3	5.84 10.3 15.9	0.758 0.737 0.720
200 1.7458 1.007 250 1.3947 1.006 300 1.1614 1.007 350 0.9950 1.009	132.5 159.6 184.6 208.2	7.590 11,44 15.89	18.1 22.3	10.3 15.9	0.737 0.720
250 1.3947 1.006 300 1.1614 1.007 350 0.9950 1.009	159.6 184.6 208.2	11,44 15,89	22.3	15.9	0.720
300 1.1614 1.007 350 0.9950 1.009	184.6 208.2	15.89			
		20.02			0.707
	230.1	20.92	30.0	29.9	0.700
		26.41	33.8	38.3	0.690
450 0.7740 1.021	250.7	32.39	37.3	47.2	0.686
500 0.6964 1.030	270.1	38.79	40.7	56.7	0.684
550 0.6329 1.040	288.4	45.57	43.9	66.7	0.683
600 0.5804 1.051	305.8	52.69	46.9	76.9	0.685
650 0.5356 1.063	322.5	60.21	49.7	87.3	0.690
700 0.4975 1.075	338.8	68.10	52.4	98.0	0.695
750 0.4643 1.087	354.6	76.37	54.9	109	0.702
800 0.4354 1.099	369.8	84.93	57.3	120	0.709
850 0.4097 1.110	384.3	93.80	59.6	131	0.716
900 0.3868 1.121	398.1	102.9	62.0	143	0.720
950 0.3666 1.131	411.3	112.2	64.3	155	0.723
1000 0.3482 1.141	424.4	121.9	66.7	168	0.726
1100 0.3166 1.159	449.0	141.8	71.5	195	0.728
1200 0.2902 1.175	473.0	162.9	76.3	224	0.728
1300 0.2679 1.189	496.0	185.1	82	238	0.719
1400 0.2488 1.207	530	213	91	303	0.703
1500 0.2322 1.230	557	240	100	350	0.685
1600 0.2177 1.248		268		390	

Correlation		Conditions
$f = 64/Re_D$	(8.19)	Laminar, fully developed
$Nu_D = 4.36$	(8.53)	Laminar, fully developed, uniform $q_s'', Pr \ge 0.6$
$Nu_D = 3.66$	(8.55)	Laminar, fully developed, uniform T_s , $Pr \ge 0.6$
$\overline{Nu_D} = 3.66 + \frac{0.0668(D/L)Re_D Pr}{1 + 0.04[(D/L)Re_D Pr]^{2/3}}$ or	(8.56)	Laminar, thermal entry length ($Pr \ge 1$ or an unheated starting length), uniform T_s
$\overline{Nu}_D = 1.86 \left(\frac{Re_D Pr}{L/D}\right)^{1/3} \left(\frac{\mu}{\mu_s}\right)^{0.14}$	(8.57)	Laminar, combined entry length { $[Re_D Pr/(L/D)]^{1/3}(\mu/\mu_s)^{0.14} \ge 2$, uniform T_s , $0.48 < Pr < 16,700, 0.0044 < (\mu/\mu_s) < 9.75$
$f = 0.316 Re_D^{-1/4}$ $f = 0.184 Re_D^{-1/5}$ or	(8.20a) ^c (8.20b) ^c	Turbulent, fully developed, $Re_D \lesssim 2 \times 10^4$ Turbulent, fully developed, $Re_D \gtrsim 2 \times 10^4$
$f = (0.790 \ln Re_D - 1.64)^{-2}$	(8.21) ^c	Turbulent, fully developed, $3000 \leq Re_D \leq 5 \times 10^6$
$\overline{Nu_D = 0.023Re_D^{4/5} Pr^n}$	(8.60) ^d	Turbulent, fully developed, $0.6 \le Pr \le 160$, $Re_D \ge 10,000$, $(L/D) \ge 10$, $n = 0.4$ for $T_s > T_m$ and $n = 0.3$ for $T_s < T_m$
or $Nu_D = 0.027 Re_D^{4/5} Pr^{1/3} \left(\frac{\mu}{\mu_s}\right)^{0.14}$	(8.61) ^d	Turbulent, fully developed, $0.7 \le Pr \le 16,700$, $Re_D \ge 10,000$, $L/D \ge 10$
or $Nu_D = \frac{(f/8)(Re_D - 1000)Pr}{1 + 12.7(f/8)^{1/2}(Pr^{2/3} - 1)}$	(8.63) ^d	Turbulent, fully developed, $0.5 < Pr < 2000$, $3000 \leq Re_D \leq 5 \times 10^6$, $(L/D) \geq 10$
$Nu_D = 4.82 + 0.0185 (Re_D Pr)^{0.827}$	(8.65)	Liquid metals, turbulent, fully developed, uniform q_s'' , 3.6 × 10 ³ < Re_D < 9.05 × 10 ⁵ , 10 ² < Pe_D < 10 ⁴
$Nu_D = 5.0 + 0.025 (Re_D Pr)^{0.8}$	(8.66)	Liquid metals, turbulent, fully developed, uniform T_s , $Pe_D > 100$

Summary of convection correlations for flow in a circular tube^{a,b,e} TADLE 9 /

The mass transfer correlations may be obtained by replacing Nu_D and Pr by Sh_D and Sc, respectively. Properties in Equations 8.53, 8.55, 8.60, 8.61, 8.63, 8.65, and 8.66 are based on T_m ; properties in Equations 8.19, 8.20, and 8.21 are based on $T_f = (T_i + T_m)/2$; properties in Equations 8.56 and 8.57 are based on $\overline{T_m} = (T_{m,i} + T_{m,c})/2$. Equations 8.20 and 8.21 pertain to smooth tubes. For rough tubes, Equation 8.63 should be used with the results of Figure 8.3.

^dAs a first approximation, Equation 8.60, 8.61, or 8.63 may be used to evaluate the average Nussel number \overline{Nu}_D over the entire tube length, if $(LD) \ge 10$. The properties should then be evaluated at the average of the mean temperature, $\overline{T}_m = (T_{m,i} + T_{m,o})/2$.

For tubes of noncircular cross section, $Re_D = D_{\mu}u_m/\nu$, $D_h = 4A_c/P$, and $u_m = m/\rho A_c$. Results for fully developed laminar flow are provided in Table 8.1. For turbulent flow, Equation 8.60 may be used as a first approximation.

Correlation		Geometry	Conditions
$\delta = 5x Re_x^{-1/2}$	(7.19)	Flat plate	Laminar, T _f
$C_{f,x} = 0.664 Re_x^{-1/2}$	(7.20)	Flat plate	Laminar, local, T_f
$Nu_x = 0.332 Re_x^{1/2} Pr^{1/3}$	(7.23)	Flat plate	Laminar, local, T_f , $0.6 \leq Pr \leq 50$
$\delta_i = \delta P r^{-1/3}$	(7.24)	Flat plate	Laminar, T _f
$\overline{C}_{f,x} = 1.328 R e_x^{-1/2}$	(7.30)	Flat plate	Laminar, average, T_f
$\overline{Nu_x} = 0.664 Re_x^{1/2} Pr^{1/3}$	(7.31)	Flat plate	Laminar, average, T_f , $0.6 \leq Pr \leq 50$
$Nu_x = 0.565 Pe_x^{1/2}$	(7.33)	Flat plate	Laminar, local, T_j , $Pr \leq 0.05$
$C_{f,x} = 0.0592 R e_x^{-1/5}$	(7.35)	Flat plate	Turbulent, local, T_f , $Re_x \lesssim 10^8$
$\delta = 0.37 x R e_x^{-1/5}$	(7.36)	Flat plate	Turbulent, local, T_f , $Re_x \lesssim 10^8$
$Nu_z = 0.0296 Re_x^{4/5} P r^{1/3}$	(7.37)	Flat plate	Turbulent, local, T_f , $Re_x \le 10^8$, 0.6 $\le Pr \le 60$
$\overline{C_{fL}} = 0.074 R e_L^{-1/5} - 1742 R e_L^{-1}$	(7.43)	Flat plate	Mixed, average, T_f , $Re_{x,c} = 5 \times 10^5$, $Re_L \lesssim 10^8$
$\overline{Nu}_L = (0.037 Re_L^{4/5} - 871) P r^{1/3}$	(7.41)	Flat plate	Mixed, average, T_f , $Re_{x,c} = 5 \times 10^5$, $Re_L \le 10^8$, $0.6 < Pr < 60$
$\overline{Nu_D} = C Re_D^m P r^{1/3}$ (Table 7.2)	(7.55b)	Cylinder	Average, T_f , $0.4 < Re_D < 4 \times 10^5$, $Pr \ge 0.7$
$\overline{Nu}_D = C Re_D^m Pr^n (Pr/Pr_s)^{1/4}$ (Table 7.4)	(7.56)	Cylinder	Average, T_{∞} , $1 < Re_D < 10^6$, 0.7 < Pr < 500
$\overline{Nu_D} = 0.3 + [0.62Re_D^{1/2} Pr^{1/3} \\ \times [1 + (0.4/Pr)^{2/3}]^{-1/4}] \\ \times [1 + (Re_D/282,000)^{5/8}]^{4/5}$	(7.57)	Cylinder	Average, T_f , $Re_D Pr > 0.2$
$ \frac{\overline{Nu_D}}{Nu_D} = 2 + (0.4Re_D^{1/2} + 0.06Re_D^{2/3})Pr^{0.4} \times (\mu/\mu_s)^{1/4} $	(7.59)	Sphere	Average, T_{∞} , $3.5 < Re_D < 7.6 \times 10^4$, 0.71 < Pr < 380
$\overline{Nu_D} = 2 + 0.6Re_D^{1/2} Pr^{1/3}$	(7.60)	Falling drop	Average, T_{∞}
$\overline{Nu_D} = 1.13C_1 Re_{D,\text{max}}^m P r^{1/3}$ (Tables 7.5, 7.6)	(7.63)	Tube bank ^c	Average, \overline{T}_f , 2000 < $Re_{D, \max}$ < 4 × 10 ⁴ , $Pr \ge 0.7$
$\overline{Nu}_D = C Re_{D,\max}^m Pr^{0.36} (Pr/Pr_s)^{1/4}$ (Tables 7.7, 7.8)	(7.67)	Tube bank ^c	Average, \overline{T} , 1000 < Re_D < 2 × 10 ⁶ , 0.7 < Pr < 500
Single round nozzle	(7.79)	Impinging jet	Average, T_f , 2000 < $Re < 4 \times 10^5$, 2 < (H/D) < 12, 2.5 < (r/D) < 7.5
Single slot nozzle	(7.82)	Impinging jet	Average, T_f , 3000 < $Re < 9 \times 10^4$, 2 < (H/W) < 10, 4 < (x/W) < 20
Array of round nozzles	(7.84)	Impinging jet	Average, T_f , 2000 < $Re < 10^5$, 2 < (<i>H/D</i>) < 12, 0.004 < A_r < 0.04
Array of slot nozzles	(7.87)	Impinging jet	Average, T_f , 1500 < Re < 4 × 10 ⁴ , 2 < (H/W) < 80, 0.008 < A_r < 2.5 $A_{r,o}$
$\overline{\varepsilon j_H} = \varepsilon j_m = 2.06 R e_D^{-0.575}$	(7.91)	Packed bed of spheres ^c	Average, \overline{T} , $90 \le Re_D \le 4000$, $Pr \approx 0.7$

 TABLE 7.9
 Summary of convection heat transfer correlations for external flow^{a, b}

Correlations in this table pertain to isothermal surfaces; for special cases involving an unheated starting length or a uniform surface heat flux,

see Section 7.2.4. When the heat and mass transfer analogy is applicable, the corresponding mass transfer correlations may be obtained by replacing Nu and Pr by Sh and Sc, respectively. For tube banks and packed beds, properties are evaluated at the average fluid temperature, $\overline{T} = (T_i + T_o)/2$, or the average film temperature,

 $\overline{T}_f = (T_s + \overline{T})/2.$

Group	Definition	Interpretation
Biot number (Bi)	$\frac{hL}{k_x}$	Ratio of the internal thermal resistance of a solid to the boundary layer thermal resistance.
Mass transfer Biot number (Bi _m)	$\frac{h_m L}{D_{AB}}$	Ratio of the internal species transfer resistance to the boundary layer species transfer resistance.
Bond number (Bo)	$\frac{g(\rho_l-\rho_v)L^2}{\sigma}$	Ratio of gravitational and surface tension forces.
Coefficient of friction (C_f)	$\frac{\tau_s}{\rho V^2/2}$	Dimensionless surface shear stress.
Eckert number (Ec)	$\frac{V^2}{c_p(T_s - T_\infty)}$	Kinetic energy of the flow relative to the boundary layer enthalpy difference.
Fourier number (Fo)	$\frac{\alpha t}{L^2}$	Ratio of the heat conduction rate to the rate of thermal energy storage in a solid. Dimensionless time.
Mass transfer Fourier number (Fo_m)	$\frac{D_{AB}t}{L^2}$	Ratio of the species diffusion rate to the rate of species storage. Dimensionless time.
Friction factor (f)	$\frac{\Delta p}{(L/D)(\rho u_{n}^2/2)}$	Dimensionless pressure drop for internal flow.
Grashof number (Gr_L)	$\frac{g\beta(T_s-T_\infty)L^3}{v^2}$	Ratio of buoyancy to viscous forces.
Colburn <i>j</i> factor (j_H)	$St Pr^{2/3}$	Dimensionless heat transfer coefficient.
Colburn j factor (j_m)	$St_m Sc^{2/3}$	Dimensionless mass transfer coefficient.
Jakob number (Ja)	$\frac{c_p(T_s-T_{sal})}{h_{fg}}$	Ratio of sensible to latent energy absorbed during liquid-vapor phase change.
Lewis number (Le)	$\frac{\alpha}{D_{AB}}$	Ratio of the thermal and mass diffusivities.
Nusselt number (Nu _L)	$\frac{hL}{k_f}$	Dimensionless temperature gradient at the surface.
Peclet number (Pe_L)	$\frac{VL}{\alpha} = Re_L Pr$	Dimensionless independent heat transfer parameter.
Prandtl number (Pr)	$\frac{c_p\mu}{k} = \frac{\nu}{\alpha}$	Ratio of the momentum and thermal diffusivities.
Reynolds number (<i>Re_L</i>)	$\frac{VL}{\nu}$	Ratio of the inertia and viscous forces.
Schmidt number (Sc)	$rac{ u}{D_{AB}}$	Ratio of the momentum and mass diffusivities.
Sherwood number (Sh_L)	$\frac{h_m L}{D_{AB}}$	Dimensionless concentration gradient at the surface.
Stanton number (St)	$\frac{h}{\rho V c_p} = \frac{N u_L}{R e_L P r}$	Modified Nusselt number.
Mass transfer Stanton number (St_m)	$\frac{h_m}{V} = \frac{Sh_L}{Re_LSc}$	Modified Sherwood number.
Weber number (We)	$\frac{ ho V^2 L}{\sigma}$	Ratio of inertia to surface tension forces.

 TABLE 6.2
 Selected dimensionless groups of heat and mass transfer

Freshine Specific Volume Heat of Vapor- Vapor- Pressure, Vapor- Pressure, Vapor- Pressore, Pressore, Vapor- Pressore, Pressore, Vapor- Pressore, Pressore, Vapor- Pressore, Pressore, Vapor- Pressore, Pressore, Vapor- Pressore, Pressore,	I nermopnysical Frop	~~~~ T				•		*	· * 4					
P (bars) $v_f \cdot 10^3$ v_g $(k_1) k_6$ $c_{p,1}$ $c_{p,3}$ $c_{p,4}$ h_1 0.00611 1.000 206.3 2502 4.217 1.855 1 0.00697 1.000 181.7 2497 4.211 1.855 1 0.001387 1.000 99.4 2473 4.198 1.864 1 0.01387 1.001 69.7 2461 4.184 1.864 1 0.013531 1.001 69.7 2473 4.199 1.864 1 0.014712 1.002 51.94 2438 4.179 1.864 1 0.03531 1.007 22.93 2414 4.178 1.864 1 0.04712 1.007 22.93 2414 4.178 1.864 1 0.06231 1.007 22.93 2414 4.178 1.864 1 0.06213 1.007 22.942 4.184 1.864 1 1.864 0.062167		5 a 0	Heat of Vapor- ization,	Spec Her (kJ/kg	at R()	Viscosity (N · s/m ²)	osity v/m²)	The Condi (W/n	Thermal Conductivity (W/m · K)	Prs	Prandtl Number	Surface Tension,	Expansion Coeffi- cient,	Temper-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		s	<i>h_{fe}</i> (kJ/kg)	C _{P.f}	cpg	· 10°	$\mu_g \cdot 10^6$	$k_f \cdot 10^3$	$k_g \cdot 10^3$	Prf	P_{r_g}	9. · IQ (N/II)	(\mathbf{K}^{-1})	ature, T (K)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.000	206.3	2502	4.217	1.854		8.02	569	18.2	12.99	0.815	75.5	-68.05	273.15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.000	181.7	2497	4.211	1.855	1652	8.09	574	18.3	12.22	0.817	75.3	-32.74	275
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.000	130.4	2485	4.198	1.858	1422	8.29	582	18.6	10.26	0.825	74.8	46.04	280
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	99.4	2473	4,189	1.861	1225	8.49	590	18.9	8.81	0.833	74.3	114.1	285
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		69.7	2461	4.184	1.864	1080	8.69	598	19.3	7.56	0.841	73.7	174.0	290
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		51.94	2449	4.181	1.868	959	8.89	606	19.5	6.62	0.849	72.7	227.5	295
0.04712 1.005 29.74 2426 4.178 1.877 0.06221 1.007 22.93 2414 4.178 1.882 0.06213 1.007 22.93 2414 4.178 1.882 0.06213 1.001 12.93 2414 4.178 1.882 0.06132 1.001 13.98 2.402 4.179 1.883 0.1053 1.011 13.98 2330 4.180 1.895 0.1719 1.016 8.82 23366 4.184 1.911 0.2167 1.018 7.09 2354 4.186 1.920 0.2713 1.021 5.74 2342 4.191 1.941 0.2713 1.021 5.74 2342 4.191 1.941 0.2713 1.027 3.846 2317 4.192 1.941 0.2713 1.027 3.846 2317 4.193 1.943 0.2310 1.030 3.180 23329 4.191 1.941 0.5100 1.030 3.180 2.304 4.199 1.943		39.13	2438	4.179	1.872	855	60.6	613	19.6	5.83	0.857	71.7	276.1	300
0.06221 1.007 22.93 2414 4.178 1.882 0.08132 1.009 17.82 2402 4.179 1.883 0.08132 1.001 13.98 2.390 4.180 1.885 0.1053 1.011 13.98 2.390 4.180 1.895 0.1051 1.013 11.06 2.378 4.184 1.911 0.1719 1.016 8.82 2.356 4.184 1.911 0.2713 1.021 5.74 2.342 4.186 1.920 0.2713 1.021 5.74 2.342 4.191 1.941 0.2713 1.021 5.74 2.342 4.193 1.930 0.2713 1.027 3.846 2.317 4.195 1.941 0.4163 1.027 3.846 2.317 4.195 1.941 0.4163 1.027 3.846 2.317 4.195 1.941 0.5100 1.030 3.180 2.304 4.195 1.941 0.5100 1.033 3.180 2.304 4.195 1.983		29.74	2426	4.178	1.877	769	9.29	620	20.1	5.20	0.865	70.9	320.6	305
0.08132 1.009 17.82 2402 4.179 1.888 0.1053 1.011 13.98 23390 4.180 1.895 0.1351 1.013 11.06 2378 4.180 1.895 0.1719 1.013 11.06 2378 4.182 1.903 0.2167 1.018 7.09 2354 4.184 1.911 0.2713 1.021 5.74 23354 4.186 1.920 0.2713 1.021 5.74 23342 4.191 1.941 0.2713 1.027 3.846 2317 4.195 1.930 0.3372 1.027 3.846 2317 4.195 1.941 0.4163 1.027 3.846 2317 4.195 1.943 0.4163 1.027 3.846 2317 4.195 1.943 0.5100 1.030 3.180 2304 4.195 1.943 0.5100 1.033 3.180 2304 4.195 1.943 0.5100 1.034 2.645 2291 4.209 1.983		22.93	2414	4.178	1.882	695	9.49	628	20.4	4.62	0.873	70.0	361.9	310
0.1053 1.011 13.98 2330 4.180 1.895 0.1351 1.013 11.06 2378 4.182 1.903 0.1719 1.016 8.82 2366 4.184 1.911 0.2167 1.018 7.09 2354 4.184 1.911 0.2713 1.021 5.74 2342 4.186 1.920 0.2713 1.021 5.74 2342 4.186 1.920 0.2713 1.021 5.74 2342 4.191 1.941 0.2713 1.024 4.683 23329 4.191 1.941 0.3372 1.027 3.846 2317 4.199 1.943 0.4163 1.027 3.846 2317 4.199 1.943 0.5100 1.030 3.180 2304 4.199 1.943 0.5100 1.030 3.180 2304 4.199 1.943 0.5100 1.030 3.180 2304 4.199 1.968 0.5209 1.031 2.645 2.791 4.203 1.983 <tr< td=""><td></td><td>17.82</td><td>2402</td><td>4.179</td><td>1.888</td><td>631</td><td>69.6</td><td>634</td><td>20.7</td><td>4.16</td><td>0.883</td><td>69.2</td><td>400.4</td><td>315</td></tr<>		17.82	2402	4.179	1.888	631	69.6	634	20.7	4.16	0.883	69.2	400.4	315
0.1351 1.013 11.06 2378 4.182 1.903 0.1719 1.016 8.82 2366 4.184 1.911 0.2167 1.018 7.09 2354 4.186 1.920 0.2713 1.021 5.74 2342 4.186 1.920 0.2713 1.021 5.74 2342 4.188 1.930 0.2167 1.021 5.74 2342 4.191 1.941 0.2163 1.027 3.846 2317 4.195 1.941 0.4163 1.027 3.846 2317 4.199 1.948 0.5100 1.030 3.180 2304 4.199 1.948 0.5100 1.033 3.180 2304 4.199 1.948 0.5209 1.034 2.645 2291 4.209 1.983 0.5514 1.038 2.212 2278 4.209 1.999 0.7514 1.038 2.212 2277 4.209 1.999 0.9040 1.044 1.679 2257 4.207 1.999 1		13.98	2390	4.180	1.895	577	9.89	640	21.0	3.77	0.894	68.3	436.7	320
0.1719 1.016 8.82 2366 4.184 1.911 0.2713 1.021 5.74 2354 4.186 1.920 0.2713 1.021 5.74 2335 4.186 1.920 0.2713 1.021 5.74 2342 4.186 1.930 0.2713 1.021 5.74 2342 4.188 1.930 0.2167 1.024 4.683 23379 4.191 1.941 0.3372 1.027 3.846 2317 4.199 1.943 0.5100 1.030 3.180 2304 4.199 1.943 0.5100 1.030 3.180 2304 4.199 1.943 0.5209 1.034 2.645 2291 4.209 1.983 0.6209 1.034 2.645 2277 4.209 1.983 0.7514 1.038 2.212 2278 4.209 1.999 0.7514 1.033 1.044 1.679 2257 4.217 2.029 1.0815 1.045 1.574 2257 4.2217 2.029 </td <td></td> <td>11.06</td> <td>2378</td> <td>4.182</td> <td>1.903</td> <td>528</td> <td>10.09</td> <td>645</td> <td>21.3</td> <td>3.42</td> <td>0.901</td> <td>67.5</td> <td>471.2</td> <td>325</td>		11.06	2378	4.182	1.903	528	10.09	645	21.3	3.42	0.901	67.5	471.2	325
0.2167 1.018 7.09 2354 4.186 1.920 0.2713 1.021 5.74 2342 4.186 1.930 0.2372 1.021 5.74 2342 4.188 1.930 0.3372 1.024 4.683 23329 4.191 1.941 0.4163 1.027 3.846 2317 4.192 1.941 0.5100 1.030 3.180 2304 4.199 1.943 0.5100 1.030 3.180 2304 4.199 1.943 0.5100 1.033 3.180 2304 4.199 1.943 0.5209 1.033 3.180 2304 4.199 1.943 0.5514 1.033 3.180 2304 4.199 1.943 0.5514 1.033 2.645 2291 4.203 1.983 0.7514 1.038 2.212 2277 4.209 1.999 0.7514 1.031 1.644 1.679 2257 4.217 2.029 1.0815 1.045 1.574 2257 4.2217 2.036		8.82	2366	4.184	116.1	489	10.29	650	21.7	3.15	0.908	66.6	504.0	330
0.2713 1.021 5.74 2342 4.188 1.930 0.3372 1.024 4.683 2329 4.191 1.941 0.3172 1.027 3.846 2317 4.195 1.941 0.4163 1.027 3.846 2317 4.195 1.941 0.5100 1.030 3.180 2304 4.199 1.968 0.5100 1.030 3.180 2304 4.199 1.968 0.5209 1.034 2.645 2291 4.203 1.983 0.5514 1.038 2.645 2291 4.209 1.983 0.7514 1.038 2.212 22778 4.209 1.999 0.7514 1.038 2.212 2257 4.207 1.999 1.0133 1.044 1.679 2257 4.207 2.029 1.0815 1.045 1.574 2252 4.220 2.036 1.0815 1.045 1.574 2252 4.220 2.036		7.09	2354	4.186	1.920	453	10.49	656	22.0	2.88	0.916	65.8	535.5	335
0.3372 1.024 4.683 2329 4.191 1.941 0.4163 1.027 3.846 2317 4.195 1.941 0.5100 1.030 3.180 2304 4.199 1.958 0.5100 1.030 3.180 2304 4.199 1.968 0.5209 1.034 2.645 2291 4.203 1.983 0.7514 1.038 2.212 2278 4.209 1.999 0.7514 1.038 2.212 2278 4.209 1.999 0.9040 1.041 1.861 2265 4.217 2.029 1.0133 1.044 1.679 2257 4.217 2.029 1.0815 1.045 1.574 2252 4.220 2.036 1.0815 1.045 1.574 2252 4.220 2.036		5.74	2342	4.188	1.930	420	10.69	660	22.3	2.66	0.925	64.9	566.0	340
0.4163 1.027 3.846 2317 4.195 1.954 0.5100 1.030 3.180 2304 4.199 1.968 0.5100 1.030 3.180 2304 4.199 1.968 0.5101 1.034 2.645 2291 4.203 1.983 0.7514 1.038 2.212 2278 4.209 1.999 0.7514 1.038 2.212 2278 4.209 1.999 0.9040 1.041 1.861 2265 4.217 2.029 1.0133 1.044 1.679 2257 4.217 2.029 1.0815 1.045 1.574 2252 4.220 2.036		4.683	2329	4.191	1.941	389	10.89	668	22.6	2.45	0.933	64.1	595.4	345
0.5100 1.030 3.180 2304 4.199 1.968 0.6209 1.034 2.645 2291 4.203 1.983 0.5514 1.038 2.212 2278 4.209 1.999 0.7514 1.038 2.212 2278 4.209 1.999 0.9040 1.041 1.861 2265 4.217 2.029 1.0133 1.044 1.679 2257 4.217 2.029 1.0815 1.045 1.574 2252 4.203 2.036 1.061 1.045 1.574 2252 4.203 2.036		3.846	2317	4.195	1.954	365	11.09	668	23.0	2.29	0.942	63.2	624.2	350
0.6209 1.034 2.645 2291 4.203 1.983 0.7514 1.038 2.212 2278 4.209 1.999 0.9040 1.041 1.861 2265 4.214 2.017 1.0133 1.044 1.679 2257 4.217 2.029 1.0815 1.045 1.574 2252 4.202 2.036	-	3.180	2304	4.199	1.968	343	11.29	671	23.3	2.14	0.951	62.3	652.3	355
0.7514 1.038 2.212 2278 4.209 1.999 0.9040 1.041 1.861 2265 4.214 2.017 1.0133 1.044 1.679 2257 4.217 2.029 1.0815 1.045 1.574 2252 4.220 2.036		2.645	2291	4.203	1.983	324	11.49	674	23.7	2.02	0.960	61.4	6.769	360
0.9040 1.041 1.861 2265 4.214 2.017 1.0133 1.044 1.679 2257 4.217 2.029 1.0815 1.045 1.574 2252 4.220 2.036		2.212	2278	4.209	1.999	306	11.69	677	24.1	1.91	0.969	60.5	707.1	365
1.044 1.679 2257 4.217 2.029 1.045 1.574 2252 4.220 2.036 1.045 1.377 2252 4.220 2.036		1.861	2265	4.214	2.017	289	11.89	679	24.5	1.80	0.978	59.5	728.7	370
1.0815 1.045 1.574 2252 4.220 2.036 1.0650 1.040 1.337 2230 4.226 2.036		1.679	2257	4.217	2.029	279	12.02	680	24.8	1.76	0.984	58.9	750.1	373.15
1 010 1 227 2220 4 226 2010	•	1.574	2252	4.220	2.036	274	12.09	681	24.9	1.70	0.987	58.6	761	375
100.7 077.4 6077 100.1 640.1		1.337	2239	4.226	2.057	260	12.29	683	25.4	1.61	0.999	57.6	788	380
1.053 1.142 2225 4.232 2.080		1.142	2225	4.232	2.080	248	12.49	685	25.8	1.53	1.004	56.6	814	385

Heat absorbed

 $Q = mC_P \Delta T$

Fourier's law in one dimension:

$$q_x'' = -k \frac{dT}{dx}$$

Newton's law of cooling:

 $q_x^{"} = h(T_s - T_{\infty})$ use ΔT_{LM} for varying $(T_s - T_{\infty})$

Stefan Boltzmann Law:

$$q'' = \sigma T_s^4$$

$$q'' = s \sigma T_s^4$$

$$G = F_{surrs} \alpha \sigma T_{surr}^4$$

$$\sigma = 5.67 \times 10^{-8} Wm^{-2} K^4$$

Thermal diffusivity:

$$\alpha = \frac{k}{\rho C_p}$$

Average heat transfer coefficient for a generic surface and a flat plate:

$$\overline{h} = \frac{1}{A_s} \int_{A_s} h dA_s$$
$$\overline{h} = \frac{1}{L} \int_{0}^{L} h dx$$

Heat transfer at a boiling surface:

$$q_{s}^{"} = h(T_{s} - T_{sat}) = h\Delta T_{e} \dots 10.3$$

Nucleate boiling correlation:

$$q_{s}^{"} = \mu_{l} h_{fg} \left[\frac{g(\rho_{l} - \rho_{v})}{\sigma} \right]^{1/2} \left(\frac{c_{p,l} \Delta T_{e}}{C_{s,f} h_{fg} \operatorname{Pr}_{l}^{n}} \right)^{3} \dots 10.5$$

TABLE 1.1 Typical values of the convection heat transfer coefficient

Process	$h (W/m^2 \cdot K)$
Free convection	·
Gases	225
Liquids	50-1000
Forced convection	
Gases	25-250
Liquids	100-20,000
Convection with phase change	
Boiling or condensation	2500-100,000

TABLE 10.1Values of $C_{s,f}$ for varioussurface-fluid combinations [5-7]

Surface-Fluid Combination	$C_{s,f}$	n
Water-copper		
Scored	0.0068	1.0
Polished	0.0130	1.0
Water-stainless steel		
Chemically etched	0.0130	1.0
Mechanically polished	0.0130	1.0
Ground and polished	0.0060	1.0
Water-brass	0.0060	1.0
Water-nickel	0.006	1.0
Water-platinum	0.0130	1.0
n-Pentane-copper		
Polished	0.0154	1.7
Lapped	0.0049	1.7
Benzene-chromium	0.0101	1.7
Ethyl alcohol-chromium	0.0027	1.7

Critical heat flux (Kutateladze and Zuber):

$$q_{\text{max}}^{"} = 0.149 h_{fg} \rho_{v} \left[\frac{\sigma g(\rho_{l} - \rho_{v})}{\rho_{v}^{2}} \right]^{1/4} \dots 10.7$$

Minimum heat flux (Zuber) (moderate pressures):

$$q_{\min}^{"} = 0.09 \rho_{\nu} h_{fg} \left[\frac{g \sigma(\rho_l - \rho_{\nu})}{(\rho_l + \rho_{\nu})^2} \right]^{1/4} \dots 10.8$$

Film pool boiling for T_S<300°C (radiation component low):

$$\overline{N}u_D = \frac{\overline{h}_{conv}.D}{k_v} = C \left[\frac{g\sigma(\rho_l - \rho_v)h'_{fg}D^3}{\nu_v k_v (T_s - T_{sat})} \right]^{\frac{1}{4}} \dots 10.9$$

C=0.62 for horizontal cylinders and C=0.67 for spheres.

$$\dot{h_{fg}} = h_{fg} + 0.80c_{p,v}(T_s - T_{sat})$$

Film pool boiling for T_S>300°C:

$$\overline{h}^{\frac{4}{3}} = \overline{h}_{conv}^{\frac{4}{3}} + \overline{h}_{rad} \cdot \overline{h}^{\frac{1}{3}}$$
if $\overline{h}_{rad} \prec \overline{h}_{conv}$;
$$\overline{h} = \overline{h}_{conv} + \frac{3}{4} \overline{h}_{rad} \qquad \dots \dots 10.10$$
where $\overline{h}_{rad} = \frac{\varepsilon \sigma (T_s^4 - T_{sat}^4)}{T_s - T_{sat}}$

External forced convection boiling of a cylinder in cross flow:

High velocity:
$$\frac{q''_{\text{max}}}{\rho_v h_{fg} V} = \frac{1}{\pi} \left[1 + \left(\frac{4}{W e_D} \right)^{\frac{1}{3}} \right]$$

Low velocity: $\frac{q''_{\text{max}}}{\rho_v h_{fg} V} = \frac{\left(\frac{\rho_l}{\rho_v} \right)^{\frac{3}{4}}}{169\pi} + \frac{\left(\frac{\rho_l}{\rho_v} \right)^{\frac{1}{2}}}{19.2\pi W e_D^{\frac{1}{3}}}$

$$We_D = \frac{\rho V^2 D}{\sigma}$$

 $\mathbf{If} \frac{q''_{\max}}{\rho_v h_{fg} V} \leq \left[\frac{0.275}{\pi}\right] \left[\frac{\rho l}{\rho v}\right]^{\frac{1}{2}} + 1 \text{ then the velocity is high, otherwise it is low}$

CONDENSATION:

Nusselt laminar film condensation correlation:

$$\overline{N}u_{L} = \frac{\overline{h}_{L}.L}{k_{L}} = 0.943 \left[\frac{\rho_{L}g(\rho_{L} - \rho_{V})h'_{fg}.L^{3}}{\mu_{L}.k_{L}(T_{sat} - T_{s})} \right]^{1/4} \dots 10.31$$

Modified latent heat of formation term for condensation (Rohsenow):

 $\dot{h}_{fg} = h_{fg} (1 + 0.68Ja) \dots 10.26$

Total heat transfer to the surface:

$$q = \bar{h}_L A(T_{sat} - T_S) \dots 10.32$$

Total condensation rate:

$$\dot{m} = \frac{q}{h'_{fg}} = \frac{h_L \cdot A \cdot (T_{sat} - T_s)}{h'_{fg}} \dots 10.33$$

Reynolds number for condensation

$$\operatorname{Re}_{\delta} = \frac{4\dot{m}}{\mu_L b} = \frac{4\rho_l u_m \delta}{\mu_L} \dots 10.35$$

Condensate mass flowrate:

$$m(x) = \rho_l u_m b \delta(x)$$

$$m(x) = b \frac{g \rho_l (\rho_l - \rho_v) \delta(x)^3}{3\mu_l} \dots 10.19$$

 u_m = mean velocity, δ = thickness,b = breadth of plate

Thickness of condensate:

$$\delta(x) = \left[\frac{4k_l \mu_l (T_{sat} - T_s)x}{g\rho_l (\rho_l - \rho_v)h_{fg}}\right]^{1/4}$$

$Re_{\delta} \leq 30$ for wave-free laminar flow:

$$\frac{\overline{h}_{L}(v_{l}^{2}/g)^{\frac{1}{3}}}{k_{l}} = 1.47 \operatorname{Re}_{\delta}^{-\frac{1}{3}} \dots 10.37$$

 $30 \le \text{Re}_{\delta} \le 1800$ for wavy laminar flow:

 $v_l = \frac{\mu_l}{\rho_l}$

$$\frac{\bar{h}_{L}(v_{l}^{2}/g)^{\frac{1}{3}}}{k_{l}} = \frac{\text{Re}_{\delta}}{1.08 \,\text{Re}_{\delta}^{1.22} - 5.2}$$

$Re_{\delta} > 1800$ for turbulent flow:

$$\frac{\overline{h}_{L}(v_{l}^{2}/g)^{\frac{1}{3}}}{k_{l}} = \frac{\text{Re}_{\delta}}{8750 + 58 \,\text{Pr}^{-0.5} (\text{Re}_{\delta}^{0.75} - 253)}$$

Radiation Data:

Stefan Boltzmann constant = 5.67 x 10⁻⁸Wm⁻²K⁻¹

View factors:

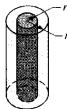
-Two parallel infinite surfaces:

 $F_{12} = F_{21} = 1$

-Concentric cylinders, spheres and in general:

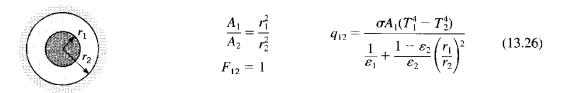
 $F_{21}A_2 = F_{12}A_1$ (Reciprocity Theorem)

For metals: $\varepsilon_1 = \varepsilon_1(T_1)$ and $\alpha_1 = \varepsilon_1(\sqrt{T_1T_2})$

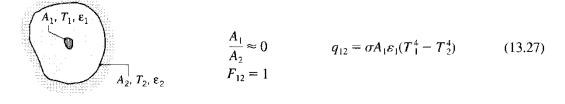

TABLE 1.5	Summary of heat transfer processes	5
-----------	------------------------------------	---

Mode	Mechanism(s)	Rate Equation	Equation Number	Transport Property or Coefficient
Conduction	Diffusion of energy due to random molecular motion	$q_x''(W/m^2) = -k \frac{dT}{dx}$	(1.1)	k (W/m ⋅ K)
Convection	Diffusion of energy due to random molecular motion plus energy , transfer due to bulk motion (advection)	$q''(W/m^2) = h(T_s - T_\infty)$	(1.3a)	$h (W/m^2 \cdot K)$
Radiation	Energy transfer by	$q''(W/m^2) = \varepsilon \sigma (T_s^4 - T_{sur}^4)$	(1.7)	3
	electromagnetic waves	or $q(W) = h_r A(T_s - T_{sur})$	(1.8)	$h_r (W/m^2 \cdot K)$

Large (Infinite) Parallel Planes


A_1, T_1, ε_1 A_2, T_2, ε_2	$A_1 = A_2 = A$ $F_{12} = 1$	$q_{12} = \frac{A\sigma(T_1^4 - T_2^4)}{\frac{1}{\sigma} + \frac{1}{\sigma} - 1}$	(13.24)
Long (Infinite) Concentric		$\boldsymbol{\varepsilon}_1 \boldsymbol{\varepsilon}_2$	

Long (Infinite) Concentrio Cylinders



$$\frac{A_1}{A_2} = \frac{r_1}{r_2} \qquad q_{12} = \frac{\sigma A_1 (T_1^4 - T_2^4)}{\frac{1}{\varepsilon_1} + \frac{1 - \varepsilon_2}{\varepsilon_2} \left(\frac{r_1}{r_2}\right)}$$
(13.25)
$$r_{12} = 1 \qquad q_{12} = \frac{\sigma A_1 (T_1^4 - T_2^4)}{\frac{1}{\varepsilon_1} + \frac{1 - \varepsilon_2}{\varepsilon_2} \left(\frac{r_1}{r_2}\right)}$$
(13.25)

Concentric Spheres

Small Convex Object in a Large Cavity

Geometry	Species Concentration Distribution, $x_A(x)$ or $x_A(r)$	Species Diffusion Resistance, $R_{m, dif}$
$x_{A, s1}$	$x_A(x) = (x_{A,s2} - x_{A,s1}) \frac{x}{L} + x_{A,s1}$	$R_{m,\rm dif} = \frac{L}{D_{\rm AB}A}^{b}$
	$x_{A}(r) = \frac{x_{A,s1} - x_{A,s2}}{\ln(r_{1}/r_{2})} \ln\left(\frac{r}{r_{2}}\right) + x_{A,s2}$	$R_{m,\text{dif}} = \frac{\ln \left(r_2/r_1\right)^c}{2\pi L D_{\text{AB}}}$
$\begin{array}{c c} x_{A, s2} \\ x_{A, s1} \\ \hline \\ r \\ r$	$x_A(r) = \frac{x_{A,s1} - x_{A,s2}}{1/r_1 - 1/r_2} \left(\frac{1}{r} - \frac{1}{r_2}\right) + x_{A,s2}$	$R_{m,\mathrm{dif}} = \frac{1}{4\pi D_{\mathrm{AB}}} \left(\frac{1}{r_1} - \frac{1}{r_2}\right)^c$
$x_{A, s1}$ ^a Assuming C and D _{AB} are constant ^b N _{A,x} = (C _{A,s1} - C _{A,s2})/R _{m, dif} .		

 TABLE 14.1
 Summary of Species Diffusion Solutions for Stationary

 Media with Specified Surface Concentrations^a

 ${}^{b}N_{A,x} = (C_{A,s1} - C_{A,s2})/R_{m, \text{ dif.}}$ ${}^{c}N_{A,r} = (C_{A,s1} - C_{A,s2})/R_{m, \text{ dif.}}$

TABLE 3.3	One-dimensional, steady-state solutions
to the he	at equation with no generation

	Plane Wall	Cylindrical Wall ^a	Spherical Wall ^e
Heat equation	$\frac{d^2T}{dx^2} = 0$	$\frac{1}{r}\frac{d}{dr}\left(r\frac{dT}{dr}\right) = 0$	$\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{dT}{dr}\right) = 0$
Temperature distribution	$T_{x,1} = \Delta T \frac{x}{L}$	$T_{s,2} + \Delta T \frac{\ln{(r/r_2)}}{\ln{(r_1/r_2)}}$	$T_{s,1} = \Delta T \left[\frac{1 - (r_1/r)}{1 - (r_1/r_2)} \right]$
Heat flux (q'')	$k \frac{\Delta T}{L}$	$\frac{k\Delta T}{r\ln\left(r_2/r_1\right)}$	$\frac{k\Delta T}{r^2[(1/r_1) - (1/r_2)]}$
Heat rate (q)	$kA\frac{\Delta T}{L}$	$\frac{2\pi Lk\Delta T}{\ln\left(r_2/r_1\right)}$	$\frac{4\pi k\Delta T}{(1/r_1)-(1/r_2)}$
Thermal resistance $(R_{t,cond})$	$\frac{L}{kA}$	$\frac{\ln\left(r_2/r_1\right)}{2\pi Lk}$	$\frac{(1/r_1) - (1/r_2)}{4 \pi k}$

"The critical radius of insulation is $r_{cr} = k/h$ for the cylinder and $r_{cr} = 2k/h$ for the sphere.