PROGRAM

: BACCALAUREUS TECHNOLGIAE

CHEMICAL ENGINEERING

SUBJECT : UNIT OPERATIONS IV

CODE : WARB432

DATE : WINTER EXAMINATION

29 MAY 2019

DURATION : SESSION 1(08:30-11:30)

WEIGHT : $40: 60$
TOTAL MARKS : 100
EXAMINER(S) : MR G PAHLA
MODERATOR : DR I AMER
NUMBER OF PAGES : 07 PAGES

REQUIREMENTS : 2 Sheets of Graph Paper

HINTS AND INSTRUCTIONS TO CANDIDATE(S):

- Purpose of assessment is to determine not only if you can write down an answer, but also to assess whether you understand the concepts, principles and expressions involved. Set out solutions in a logical and concise manner with justification for the steps followed.
- ATTEMPT ALL QUESTIONS. Please answer each question to the best of your ability.
- Write your details (module name and code, ID number, student number etc.) on script(s).
- Number each question clearly; questions may be answered in any order.
- Make sure that you read each question carefully before attempting to answer the question.
- Show all steps (and units) in calculations; this is a 'closed book' test.
- Ensure your responses are legible, clear and include relevant units (where appropriate).

Question One (Multi-component Distillation)

A distillation column is used to separate a hydrocarbon mixture containing $25 \% \mathrm{C}_{2}, 30 \% \mathrm{C}_{3}$, $30 \% \mathrm{nC}_{4}$ and $15 \% \mathrm{nC}_{5}$. The aim is to recover 96% of C_{4} in the bottom stream. It can be assumed that all C_{2} reports to the distillate and the mole fraction of C_{3} in the bottom stream is 0.005 . The feed is at its dew point and its flow rate is $1200 \mathrm{kmol} / \mathrm{hr}$. The column operates at $4.5 \mathrm{bar}, 25^{\circ} \mathrm{C}$ and $1.3 \mathrm{R}_{\mathrm{m}}$. The relative volatilities with respect to nC_{4} are $10.69,3.466,1$ and 0.31 .

Use the shortcut design method (Fenseke - Underwoood - Gilliland) to estimate the actual number of trays at 75% overall efficiency.

Question Two (Liquid -Liquid Extraction)

[Total: 30 Marks]
A counter-current solvent extraction system is used to treat $500 \mathrm{~kg} / \mathrm{h}$ of a $40 \% \mathrm{wt}$ mixture of DPH in Docosane. The aim is to recover the DPH until the final raffinate only contains $5 \% \mathrm{wt}$ DPH. It is suggested to use $500 \mathrm{~kg} / \mathrm{h}$ of solvent containing 98% wt of Furfural and 2% DPH. The equilibrium and tie-line data is given below.

Equilibrium data (mass\%)													
A	96.0	84.0	67.0	52.5	32.6	21.3	13.2	7.7	4.4	2.6	1.5	1.0	0.7
B	4.0	5.0	7.0	10.0	20.0	30.0	40.0	50.0	60.0	70.0	80.0	90.0	99.3
C	0	11.0	26.0	37.5	47.4	48.7	46.8	42.3	35.6	27.4	18.5	9.0	0.0

Tie-line data					
Raffinate (Docosane) phase, mass\%		Extract (Furfural) phase, mass\%			
A	B	C	A	B	C
85.2	4.8	10.0	1.1	89.1	9.8
69.0	6.5	24.5	2.2	73.6	24.2
43.9	13.3	42.6	6.8	52.3	40.9

2.1.Using the right angle diagram, determine the number of theoretical stages required. [25]
2.2.Determine the amount of the raffinate and extract phases exiting the counter current extraction cascade. [5]

Question Three (Multicomponent Absorption)

[Total: 15 Marks]
A mixture of alkanes is to be separated by continuous counter-current absorption in a nonvolatile oil. The feed flow is $1000 \mathrm{kmol} / \mathrm{hr}$ and the ratio of solvent to untreated vapour is 2.5 kmol solvent $/ 1 \mathrm{kmol}$ vapour. The feed composition and K -values are given in the Table below. The pressure is 3 bar , and the temperature is $200{ }^{\circ} \mathrm{C}$. It is desired to recover 90% of the n -butane in the liquid. Find the number of theoretical stages, and the gas and liquid outlet compositions for C_{1}.

Component	Mol\%	K
CH_{4}	80	46
$\mathrm{C}_{2} \mathrm{H}_{6}$	4	8.1
$\mathrm{C}_{3} \mathrm{H}_{8}$	6	2.8
$\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}$	3	0.7
$\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{12}$	0.3	0.22

Question Four (Crystallization)

[Total: 15 Marks]
A feed solution of 2268 kg at 328 K that contains $48,2 \mathrm{~kg} \mathrm{MgSO} 4 / 100 \mathrm{~kg}$ water is cooled to 293 K where $\mathrm{MgSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$ crystals are removed. The solubility of the salt at 293 K is $35,5 \mathrm{~kg}$ $\mathrm{MgSO}_{4} / 100 \mathrm{~kg}$ water. Calculate the yield of crystals assuming no water is vapourised.
4.1. Use mass balance. [8]
4.2. Use formulae. [7]
[Mw: $\mathrm{Mg}=24 \mathrm{~g} / \mathrm{mol} ., \mathrm{S}=32 \mathrm{~g} / \mathrm{mol}$]

Question Five (Fluidization)

Non-spherical catalyst pellets, 4 mm in diameter, shape factor of 1.1 , are to be fluidized with air at 101.3 kPa at $70{ }^{\circ} \mathrm{C}$. The density of the catalyst particles is $1100 \mathrm{~kg} / \mathrm{m}^{3}$. Take the molecular weight of air as $26.9 \mathrm{~kg} / \mathrm{kmol}$.
If it is assumed that the point of incipient fluidization is reached at $\varepsilon_{m f}=0.43$ Calculate the pressure gradient at this point (incipient fluidization).

$$
\mu_{a i r}=0.0000207 \mathrm{Ns} / \mathrm{m}^{2} .
$$

END

Useful Formulae and Correlations

McCabe-Thiele Method: $y_{1}=\frac{\alpha_{1,2}\left(x_{1}\right)}{1+\left(x_{1}\right)\left(\alpha_{1,2}-1\right)}$
$y_{n}=\frac{L_{n}}{V_{n}} x_{n+1}+\frac{D}{V_{n}} x_{D}$ or $y_{n}=\frac{R}{R+1} x_{n+1}+\frac{x_{D}}{R+1}, \quad y_{m}=\frac{L_{m}}{V_{m}} x_{m+1}-\frac{B}{V_{M}} x_{B} \quad y_{q}=\frac{q}{q-1} x_{q}-\frac{z_{f}}{q-1}$

Fenske's Equation(s):

$N_{\min }+1=\frac{\log \left[\left(\frac{x_{L K}}{x_{H K}}\right)_{D}\left(\frac{x_{H K}}{x_{L K}}\right)_{B}\right]}{\log \alpha_{L K, H K}}, \quad b_{i}=\frac{f_{i}}{1+\left(d_{r} / b_{r}\right)\left(\alpha_{i, r}\right)_{m}^{N_{\text {min }}}}, \quad d_{i}=\frac{f_{i}\left(d_{r} / b_{r}\right)\left(\alpha_{i, r}\right)_{m}^{N_{\text {min }}}}{1+\left(d_{r} / b_{r}\right)(\alpha, r)_{m}^{N_{\text {min }}}}$
Minimum Reflux Ratio by Underwood's Equation(s):

$$
\begin{array}{ll}
\sum \frac{\alpha_{i} x_{i D}}{\alpha-\theta}=R_{m}+1 \\
\sum \frac{\alpha_{i} x_{i F}}{\alpha-\boldsymbol{\theta}}=1-\boldsymbol{q} & \alpha_{H K}<\theta<\alpha_{L K} \\
\end{array}
$$

Feed Plate Location by Kirkbride's Equation(s):

$$
\log \left[\frac{N_{r}}{N_{s}}\right]=0.026 \log \left[\frac{W}{D}\left(\frac{x_{H K}}{x_{L K}}\right)_{F}\left(\frac{x_{L K W}}{x_{H K D}}\right)^{2}\right], \quad \frac{N_{R}}{N_{S}}=\left[\left(\frac{Z_{j, F}}{Z_{i, F}}\right)\left(\frac{x_{i, B}}{x_{j, D}}\right)^{2}\left(\frac{B}{D}\right)\right]^{0.206}
$$

Erbar-Maddox correlation: $\frac{R}{R+1}$ vs $\frac{N_{m}}{N} \quad$ with $\quad \frac{R_{m}}{R_{m}+1} \quad$ as a parameter

Fig. 11.11. Erbar-Maddox correlation (Erbar and Maddox, 1961)

Bubble and Dew point calculation(s):
$\begin{array}{lll}\sum y_{i}=\sum K_{i} x_{i}=K_{c} \sum \alpha_{i} x_{i}=1.0, & y_{i}=\frac{\alpha_{i} x_{i}}{\sum\left(\alpha_{i} x_{1}\right)}, & \sum_{i=1}^{N_{c}} y_{1}=\sum_{i=1}^{N_{c}} K_{i} x_{i}=1.0, \\ \sum x_{i}=\sum\left(\frac{y_{i}}{K_{i}}\right)=\left(\frac{1}{K_{c}}\right) \sum\left(\frac{y_{i}}{\alpha_{1}}\right)=0, & x_{i}=\frac{y_{i} x_{i}}{\sum\left(y_{i}\right)}, & \sum_{i=1}^{y_{c}} x_{i}=\sum_{i=1}^{\left.N_{i}\right)} \frac{y_{i}}{K_{i}},\end{array}$
Gilliland correlation (number of ideal plates at the operating reflux):

Molokanov's Correlation:
$\frac{N-N_{\min }}{N+1}=1-\exp \left[\left(\frac{1+54.4 \Psi}{11+117,2 \Psi}\right)\left(\frac{\psi-1}{\psi^{0.5}}\right)\right] \quad$ Where: $\Psi \equiv \frac{R-R_{\min }}{R+1} ; \quad R_{m}=\frac{1}{\alpha-1}\left[\frac{x_{d}}{x_{f}}-\alpha \frac{1-x_{d}}{1-x_{f}}\right]$
Slope of q-line: $-\left(\frac{f}{1-f}\right) \quad ; \quad f=\left(\frac{c_{p}\left(t_{b}-t_{f}\right)_{\text {Liquid }}+\Lambda_{\text {Feed }}+\left(c_{p}\left(t_{b}-t_{f}\right)\right) \text { superneated vapour }}{\Lambda}\right)$
$\underline{\text { Number of transfer units is given by: }} N_{O G}=\int_{Y_{1}}^{Y_{2}} \frac{d Y}{Y_{e}-Y} \quad ; \quad N_{O G}=\frac{Z}{H_{O G}} ; \quad N_{O L}=N_{O G}\left(\frac{m G_{M}}{L_{M}}\right)$
$\underline{\text { Height of transfer unit is given by: }} H_{O G}=\frac{G_{M}}{K_{G} a P}$

Equilibrium partial pressure: $\quad P_{a}=P_{a}^{o}\left\{\frac{n_{a}}{n_{a}+n_{b}+n_{c}+\ldots \ldots \ldots \ldots . .}\right\}=x_{a} P_{a}^{o}$
$\begin{array}{ll} & \Delta T=T_{\text {steam }}-T_{b} \\ \text { Heat balance: } & \left\{m_{\text {steam }} x h_{f g}\right\}=\left\{m_{\text {feed }} C_{p} \Delta T\right\}+\left\{m_{v} x h_{f g}\right\}+\left\{m_{L} C_{p} \Delta T\right\}\end{array}$

$$
\begin{aligned}
& Q=m_{\text {steam }} h_{f g}=m_{\text {feed }} C_{p} \Delta T+m_{v} h_{f g} \\
& Q=m_{\text {feed }} C_{p} \Delta T+m_{v 1} h_{f g}
\end{aligned}
$$

Start-up filter: $\frac{t-t_{s}}{V-V_{s}}=\frac{K_{1}\left(V+V_{s}\right)}{2 P}+\frac{K_{2}}{P}$
Rotary filter: $\quad \theta_{f}=k_{f} \theta_{c} \quad ; \quad \theta_{f}=\frac{K_{1} V_{f}^{2}}{2 P}+\frac{K_{2} V_{f}}{P}$
Ergun equation: $-\frac{\Delta P}{L}=\frac{150(1-\varepsilon)^{2}}{\varepsilon^{3}} \frac{\mu . u_{c}}{d^{2}}+\frac{1.75(1-\varepsilon)}{\varepsilon^{3}} \frac{\rho \cdot u_{c}{ }^{2}}{d} ; \quad G a=\frac{d^{3} \rho\left(\rho_{s}-\rho\right) g}{\mu^{2}}$
Pressure drop: $\quad(-\Delta P)=\left(1-e_{m f}\right)\left(\rho_{s}-\rho\right) \lg ; \quad \quad R e_{0}^{\prime}=\left(2.33 G a^{0.018}-1.53 G a^{-0.016}\right)^{13.3}$
$\frac{L_{f}}{L_{p}}=\frac{1-e_{p}}{1-e_{f}} \quad ; \quad\left(1-e_{m f}\right)\left(\rho_{s}-\rho\right) g=\frac{150\left(1-e_{m f}\right)^{2}}{e_{m f}^{3}} \frac{\mu u_{m f}}{d^{2}}+\frac{1.75\left(1-e_{m f}\right)}{e_{m f}^{3}} \frac{\rho u^{2}}{d}$

Water balance: $w_{1}=w_{2}+\left(y-\frac{y}{R}\right)+w_{1} E$
Yield of crystals: $y=\frac{R w_{1}\left[c_{1}-c_{2}(1-E)\right]}{\left[1-c_{2}(R-1)\right]}$
$\frac{1}{n F} \frac{V_{W}}{V_{L}}=\ln \frac{1-F}{F}$

	Table A.1: Conversion Factors	Energy	$1 \mathrm{~J}=1 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}=1 \mathrm{Nm}$
Quantity	Conversion		$\begin{aligned} & =1 \mathrm{~m}^{3} \mathrm{~Pa}=10^{-5} \mathrm{~m}^{3} \mathrm{bar}=10 \mathrm{~cm}^{3} \text { bar } \\ & =9.86923 \mathrm{~cm}^{3}(\mathrm{~atm}) \end{aligned}$
Length	$\begin{aligned} 1 \mathrm{~m} & =100 \mathrm{~cm} \\ & =3.28084(\mathrm{ft})=39.3701(\mathrm{in}) \end{aligned}$		$\begin{aligned} & =10^{7}(\text { dyne }) \mathrm{cm}=10^{7}(\mathrm{erg}) \\ & =0.239006(\mathrm{cal}) \end{aligned}$
Mass	$\begin{aligned} 1^{\prime} \mathrm{kg} & =10^{3} \mathrm{~g} \\ & =2.20462\left(\mathrm{lb}_{\mathrm{m}}\right) \end{aligned}$		$\begin{aligned} & =5.12197 \times 10^{-3}(\mathrm{ft})^{3}(\mathrm{psia})=0.737562(\mathrm{ft})\left(\mathrm{lb}_{\mathrm{f}}\right) \\ & =9.47831 \times 10^{-4}(\mathrm{Btu})=2.77778 \times 10^{-7} \mathrm{kWhr} \end{aligned}$
Force	$\begin{aligned} 1 \mathrm{~N} & =1 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-2} \\ & =10^{5}(\text { dyne }) \\ & =0.224809\left(\mathrm{lb}_{\mathrm{f}}\right) \end{aligned}$	Power	$\begin{aligned} 1 \mathrm{~kW} & =10^{3} \mathrm{~W}=10^{3} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-3}=10^{3} \mathrm{~J} \mathrm{~s}^{-1} \\ & =239.006(\mathrm{cal}) \mathrm{s}^{-1} \\ & =737.562(\mathrm{ft})\left(\mathrm{lb}_{\mathrm{f}}\right) \mathrm{s}^{-1} \\ & =0.947831(\mathrm{Btu}) \mathrm{s}^{-1} \end{aligned}$
Pressure	$\begin{aligned} 1 \text { bar } & =10^{5} \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-2}=10^{5} \mathrm{Nm}^{-2} \\ & =10^{5} \mathrm{~Pa}=10^{2} \mathrm{kPa} \\ & =10^{6}(\text { dyne }) \mathrm{cm}^{-2} \\ & =0.986923(\mathrm{~atm}) \\ & =14.5038 \text { (psia) } \\ & =750.061 \text { (torr) } \end{aligned}$		$=1.34102(\mathrm{hp})$ 2: Values of the Universal Gas Constant
Volume	$\begin{aligned} 1 \mathrm{~m}^{3} & =10^{6} \mathrm{~cm}^{3}=10^{3} \text { liters } \\ & =35.3147(\mathrm{ft})^{3} \\ & =264.172(\mathrm{gal}) \end{aligned}$	$\begin{aligned} R & =8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}=8.314 \mathrm{~m}^{3} \mathrm{~Pa} \mathrm{~mol} \mathrm{~m}^{-1} \mathrm{~K}^{-1} \\ & =83.14 \mathrm{~cm}^{3} \mathrm{bar} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}=8,314 \mathrm{~cm}^{3} \mathrm{kPa} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\ & =82.06 \mathrm{~cm}^{3}(\mathrm{~atm}) \mathrm{mol}^{-1} \mathrm{~K}^{-1}=62,356 \mathrm{~cm}^{3}(\mathrm{torr}) \mathrm{mol}^{-1} \mathrm{~K}^{-1} \\ & =1.987(\mathrm{cal}) \mathrm{mol}{ }^{-1} \mathrm{~K}^{-1}=1.986(\mathrm{Btu})(\mathrm{lb} \text { mole })^{-1}(\mathrm{R})^{-1} \\ & =0.7302(\mathrm{ft})^{3}(\mathrm{~atm})(\mathrm{lb} \text { mol })^{-1}(\mathrm{R})^{-1}=10.73(\mathrm{ft})^{3}(\mathrm{psia})(\mathrm{lb} \mathrm{~mol})^{-1}(\mathrm{R})^{-1} \\ & =1.545(\mathrm{ft})(\mathrm{lb})(\mathrm{lb} \mathrm{~mol})^{-1}(\mathrm{R})^{-1} \end{aligned}$	
Density	$\begin{aligned} 1 \mathrm{~g} \mathrm{~cm}^{-3} & =10^{3} \mathrm{~kg} \mathrm{~m}^{-3} \\ & =62.4278\left(\mathrm{lb}_{\mathrm{m}}\right)(\mathrm{ft})^{-3} \end{aligned}$		

