

PROGRAM	$:$ BACHELOR OF TECHNOLOGY
	CHEMICAL ENGINEERING
$\underline{\text { SUBJECT }}$	$:$ TRANSFER PROCESSES 2A
$\underline{\text { CODE }}$	$:$ TPRCHA2
$\underline{\text { DATE }}$	$:$ SUMMER SSA EXAMINATION
	$:\left(\begin{array}{l}\text { DURATION } \\ \underline{\text { WEIGHT }}\end{array}\right.$
$\underline{\text { TOTAL MARKS }}$	$: 72: 60$

EXAMINER(S) : DR R HUBERTS
MODERATOR : MRS N SEEDAT
NUMBER OF PAGES : 11 PAGES

REQUIREMENTS : Use of scientific (non-programmable) calculator is permitted (only one per candidate)

HINTS AND INSTRUCTIONS TO CANDIDATE(S):

- ATTEMPT ALL QUESTIONS. Please answer each question to the best of your ability.
- Write your details (module name and code, ID number, student number etc.) on script(s).
- Number each question clearly; questions may be answered in any order.
- Make sure that you read each question carefully before attempting to answer the question.
- Transfer the answers accurately onto Blackboard (Bb).

Question One

[Total: 12 Marks]

Consider a cube of dimension $\mathrm{d}=1 \mathrm{~cm}$, temperature 400 K , emissivity 0.8 and absorptivity 0.9 hanging in a room where the air temperature is 300 K and the wall, ceiling and floor are at 310 K . The relevant heat transfer coefficient is 10 $\mathrm{Wm}^{-2} \mathrm{~K}^{-1} .1 .1$. Calculate the percentage of the total heat that is lost from the cube surface due to convection.
1.2. What will happen to the temperature of the block with time? Explain.

Question Two

[Total: 34 Marks]
$0.01 \mathrm{kgs}^{-1}$ of a pharmaceutical liquid, consisting mainly of water (assume same physical properties), is to be sterilized by heating from 300 K to 350 K in a straight 0.02 m internal diameter stainless-steel tube. For this tube, a uniform surface temperature of 373 K is maintained by steam condensing on the outer surface of the tube. Thermal resistance of the tube wall may be neglected, and fully developed velocity and temperature profiles may be assumed.
2.1. Is the steam temperature constant? Explain.
2.2. Draw an annotated diagram in your script and estimate the length of the tube.
2.3. What type of heat is used to increase the liquid temperature?

Question Three

[Total: 10 Marks]
Acetone diffuses through air at 273 K in an equimolar counter current flow mode through a cylinder of length 1 m and diameter increasing gradually from 0.1 m to 0.2 m . The drop in acetone concentration from the inlet to the outlet of the cylinder is $5 \mathrm{molm}^{-3}$. What is the steady state diffusion rate of the acetone?

Question Four
[Total: 16 Marks]

Carbon dioxide is stored in an elevated square rubber tank with wall thickness 0.01 m and dimensions $2 \mathrm{~m} \times 3 \mathrm{~m} \times 1 \mathrm{~m}$ high at an absolute pressure of 200 kPa . Neglect the concentration of carbon dioxide in the air next to the tank and estimate how much carbon dioxide is lost from the tank in gd^{-1} due to diffusion through all six surfaces in total.
[16]

END

Data Sheets

Lengths, areas and volumes:

Circumference of a circle πd
Area of a cylinder $\pi \mathrm{dL}$
Area of a circle $\pi \mathrm{d}^{2} / 4$
Surface area of a sphere $\pi \mathrm{d}^{2}$
Volume of a sphere $\pi d^{3} / 6$

Heat transfer data:

Table 1.1 Typical values of the convection heat transfer coefficient

Process	h $\left(\mathbf{W} / \mathbf{m}^{2} \cdot \mathbf{K}\right)$
Free convection	
\quad Gases	
\quad Liquids	$2-25$
Forced convection	$50-1000$
\quad Gases	
\quad Liquids	
Convection with phase change	$25-250$
\quad Boiling or condensation	$100-20,000$

Table 1.5 Summary of heat transfer processes

Mode	Mechanism(s)	Rate Equation	Equation Number	Transport Property or Coefficient
Conduction	Diffusion of energy due to random molecular motion	$q_{x}^{\prime \prime}\left(\mathrm{W} / \mathrm{m}^{2}\right)=-k \frac{d T}{d x}$	(1.1)	$k(\mathrm{~W} / \mathrm{m} \cdot \mathrm{K})$
Convection	Diffusion of energy due to random molecular motion plus energy transfer due to bulk	$q^{\prime \prime}\left(\mathrm{W} / \mathrm{m}^{2}\right)=h\left(T_{s}-T_{\infty}\right)$	$(1.3 \mathrm{a})$	$h\left(\mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}\right)$
Radiation	motion (advection $)$ Energy transfer by electromagnetic waves	$q^{\prime \prime}\left(\mathrm{W} / \mathrm{m}^{2}\right)=\varepsilon \sigma\left(T_{s}^{4}-T_{\text {surf }}^{4}\right)$ or $q(\mathrm{~W})=h_{r} A\left(T_{s}-T_{\text {sur }}\right)$	(1.7) (1.8)	ε $h_{r}\left(\mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}\right)$

Table 6.2 Selected dimensionless groups of heat and mass transfer

Group	Definition	Interpretation
Biot number (Bi)	$\frac{h L}{k_{\mathrm{s}}}$	Ratio of the internal thermal resistance of a solid to the boundary layer thermal resistance.
Mass transfer Biot number ($B i_{m}$)	$\frac{h_{m} L}{D_{\mathrm{AB}}}$	Ratio of the internal species transfer resistance to the boundary layer species transfer resistance.
Bond number (Bo)	$\frac{g\left(\rho_{i}-\rho_{v}\right) L^{2}}{\sigma}$	Ratio of gravitational and surface tension forces.
Coefficient of friction $\left(C_{f}\right)$	$\frac{\tau_{s}}{\rho V^{2} / 2}$	Dimensionless surface shear stress.
Eckert number (Ec)	$\frac{V^{2}}{c_{p}\left(T_{s}-T_{\infty}\right)}$	Kinetic energy of the flow relative to the boundary layer enthalpy difference.
Fourier number (Fo)	$\frac{\alpha t}{L^{2}}$	Ratio of the heat conduction rate to the rate of thermal energy storage in a solid. Dimensionless time.
Mass transfer Fourier number (Fo_{m})	$\frac{D_{\mathrm{AB}} t}{L^{2}}$	Ratio of the species diffusion rate to the rate of species storage. Dimensionless time.
Friction factor (f)	$\frac{\Delta p}{(L D)\left(\rho u_{m}^{2} / 2\right)}$	Dimensionless pressure drop for internal flow.
Grashof number $\left(G r_{L}\right)$	$\frac{g \beta\left(T_{s}-T_{\infty}\right) L^{3}}{\nu^{2}}$	Ratio of buoyancy to viscous forces.
Colburn j factor $\left(j_{H}\right)$	St $P r^{2 / 3}$	Dimensionless heat transfer coefficient.
Colburn j factor (j_{m})	$S t_{m} S c^{2 / 3}$	Dimensionless mass transfer coefficient.
Jakob number (Ja)	$\frac{c_{p}\left(T_{s}-T_{s a l}\right)}{h_{f g}}$	Ratio of sensible to latent energy absorbed during liquid-vapor phase change.
Lewis number (Le)	$\frac{\alpha}{D_{\mathrm{AB}}}$	Ratio of the thermal and mass diffusivities.
Nusselt number ($N u_{L}$)	$\frac{h L}{k_{f}}$	Dimensionless temperature gradient at the surface.
Peclet number ($P e_{L}$)	$\frac{V L}{\alpha}=R e_{L} P r$	Dimensionless independent heat transfer parameter.
Prandtl number $(P r)$	$\frac{c_{p} \mu}{k}=\frac{\nu}{\alpha}$	Ratio of the momentum and thermal diffusivities
Reynolds number (Re_{L})	$\frac{V L}{\nu}$	Ratio of the inertia and viscous forces.
Schmidt number (Sc)	$\frac{\nu}{D_{A B}}$	Ratio of the momentum and mass diffusivities.
Sherwood number $\left(S h_{L}\right)$	$\frac{h_{m} L}{D_{A B}}$	Dimensionless concentration gradient at the surface.
Stanton number (St)	$\frac{h}{\rho V c_{p}}=\frac{N u_{L}}{R e_{L} P r}$	Modified Nusselt number.
Mass transfer Stanton number ($S t_{m}$)	$\frac{h_{m}}{V}=\frac{S h_{L}}{R e_{L} S c}$	Modified Sherwood number.
Weber number (We)	$\frac{\rho V^{2} L}{\sigma}$	Ratio of inertia to surface tension forces.

Table 7.9 Summary of convection heat transfer correlations for external flow ${ }^{a, b}$

Correlation		Geometry	Conditions
$\delta=5 x R e_{x}^{-1 / 2}$	(7.19)	Flat plate	Laminar, T_{f}
$C_{f, x}=0.664 R_{x}^{-1 / 2}$	(7.20)	Flat plate	Laminar, local, T_{f}
$N u_{x}=0.332 \operatorname{Rex}_{x}^{1 / 2} \mathrm{Pr}^{1 / 3}$	(7.23)	Flat plate	Laminar, local, $T_{f}, 0.6 \leq P r \leq 50$
$\delta_{i}=\delta \mathrm{Pr}^{-1 / 3}$	(7.24)	Flat plate	Laminar, T_{f}
$\bar{C}_{f . x}=1.328 R e_{x}^{-1 / 2}$	(7.30)	Flat plate	Laminar, average, T_{j}
$\overline{N u}_{x}=0.664 R_{x}^{1 / 2} \mathrm{Pr}^{1 / 3}$	(7.31)	Flat plate	Laminar, average, $T_{f}, 0.6 \leqslant P r r \leqslant 50$
$N u_{x}=0.565 P e_{x}^{1 / 2}$	(7.33)	Flat plate	Laminar, local, $T_{j}, \operatorname{Pr} \leq 0.05$
$C_{f_{x}}=0.0592 R e_{x}^{-1 / s}$	(7.35)	Flat plate	Turbulent, local, $T_{f}, R e_{x} \leqslant 10^{8}$
$\delta=0.37 x R e_{x}^{-1 / 5}$	(7.36)	Flat plate	Turbulent, local, $T_{f}, R e_{x} \leqslant 10^{8}$
$N u_{x}=0.0296 \mathrm{Re}_{x}^{4 / 5} \mathrm{Pr}^{1 / 3}$	(7.37)	Flat plate	$\begin{aligned} & \text { Turbulent, local, } T_{f}, R e_{x} \leqslant 10^{8} \text {, } \\ & 0.6 \leqslant \operatorname{Pr} \leqslant 60 \end{aligned}$
$\bar{C}_{f L}=0.074 R e_{L}^{-1 / 5}-1742 R e_{L}^{-1}$	(7.43)	Flat plate	Mixed, average, $T_{f}, R e_{x, c}=5 \times 10^{5}$, $R e_{L} \leqslant 10^{8}$
$\widetilde{N u}_{L}=\left(0.037 \operatorname{Re}_{L}^{4 / 5}-871\right) P r^{1 / 3}$	(7.41)	Flat plate	$\begin{aligned} & \text { Mixed, average, } T_{f}, R e_{x_{, ~}, c}=5 \times 10^{5}, \\ & R e_{L} \leq 10^{8}, 0.6<\operatorname{Pr}<60 \end{aligned}$
$\begin{aligned} & \overline{\overline{N u} u_{D}}=C R e_{D}^{m} P r^{1 / 3} \\ & \text { (Table 7.2) } \end{aligned}$	(7.55b)	Cylinder	$\begin{aligned} & \text { Average, } T_{f}, 0.4<\operatorname{Re}_{D}<4 \times 10^{5}, \\ & \operatorname{Pr} \geqq 0.7 \end{aligned}$
$\begin{aligned} & \overline{N u}_{D}=C R e_{D}^{m} P r^{n}\left(P r / P r_{s}\right)^{1 / 4} \\ & \text { (Table 7.4) } \end{aligned}$	(7.56)	Cylinder	$\begin{aligned} & \text { Average, } T_{\infty}, 1<R e_{D}<10^{6} \text {, } \\ & 0.7<\operatorname{Pr}<500 \end{aligned}$

$\overline{\overline{N u}}_{D}=$	$0.3+\left[0.62 R e_{D}^{1 / 2} \operatorname{Pr}^{1 / 3}\right.$		Cylinder

$\begin{aligned} & \left.+0.06 \operatorname{Re}_{D}^{2 / 3}\right) \mathrm{Pr}^{0.4} \\ & \times\left(\mu / \mu_{s}\right)^{1 / 4} \end{aligned}$	(7.59)	,	$0.71<\operatorname{Pr}<380$
$\overline{N u}_{D}=2+0.6 R e_{D}^{1 / 2} \mathrm{Pr}^{1 / 3}$	(7.60)	Falling drop	Average, T_{∞}
$\overline{\overline{N u}}_{D}=1.13 C_{1} \operatorname{Re}_{D, \text { max }}^{m} \operatorname{Pr}^{1 / 3}$ (Tables 7.5, 7.6)	(7.63)	Tube bank ${ }^{\text {c }}$	$\begin{aligned} & \text { Average, } \bar{T}_{f}, 2000<R e_{D, \max }<4 \times 10^{4}, \\ & \operatorname{Pr} \geq 0.7 \end{aligned}$
$\begin{aligned} & \overline{N u}_{D}=C R e_{D, \text { max }}^{m} P^{0.36}\left(P r_{P r} / P r_{s}\right)^{1 / 4} \\ & \text { (Tables 7.7,7.8) } \end{aligned}$	(7.67)	Tube bank ${ }^{\boldsymbol{c}}$	$\begin{aligned} & \text { Average, } \bar{T}, 1000<R e_{D}<2 \times 10^{6} \text {, } \\ & 0.7<\operatorname{Pr}<500 \end{aligned}$
Single round nozzle	(7.79)	Impinging jet	$\begin{aligned} & \text { Average, } T_{f}, 2000<R e<4 \times 10^{5} \text {, } \\ & 2<(H / D)<12,2.5<(r / D)<7.5 \end{aligned}$
Single slot nozzle	(7.82)	Impinging jet	$\begin{aligned} & \text { Average, } T_{f}, 3000<R e<9 \times 10^{4} \text {, } \\ & 2<(H / W)<10,4<(x / W)<20 \end{aligned}$
Array of round nozzles	(7.84)	Impinging jet	$\begin{aligned} & \text { Average, } T_{f}, 2000<R e<10^{5}, \\ & 2<(H / D)<12,0.004<A_{r}<0.04 \end{aligned}$
Array of slot nozzles	(7.87)	Impinging jet	$\begin{aligned} & \text { Average, } T_{r}, 1500<R e<4 \times 10^{4} \\ & 2<(H / W)<80,0.008<A_{r}<2.5 A_{r, o} \end{aligned}$
$\overline{\varepsilon \bar{j}_{H}}=\varepsilon \bar{j}_{m}=2.06 R e_{D}^{-0.575}$	(7.91)	Packed bed of spheres ${ }^{c}$	Average, $\bar{T}, 90 \leq R e_{D} \leq 4000, \operatorname{Pr} \approx 0.7$

${ }^{a}$ Correlations in this table pertain to isothermal surfaces; for special cases involving an unheated starting length or a uniform surface heat flux, see Section 7.2.4.
${ }^{6}$ When the heat and mass transfer analogy is applicable, the corresponding mass transfer correlations may be obtained by replacing Nu and Pr by $S h$ and $S c$, respectively.
For tube banks and packed beds, properties are evaluated at the average fluid temperature, $\bar{T}=\left(T_{i}+T_{o}\right) / 2$, or the average film temperature, $\bar{T}_{f}=\left(T_{s}+\bar{T}\right) / 2$.
Table A. 6 Thermophysical Properties of Saturated Water ${ }^{\boldsymbol{a}}$

Temperature, T (K)	$\underset{\underset{P}{\text { Pressure, }} \text { (bars) }{ }^{\boldsymbol{b}}}{ }$	Specific Volume ($\mathrm{m}^{3} / \mathrm{kg}$)		Heat of Vaporization, $\boldsymbol{h}_{f g}$$(\mathbf{k J} / \mathrm{kg})$	$\begin{gathered} \text { Specific } \\ \text { Heat } \\ (\mathbf{k J} / \mathbf{k g} \cdot \mathbf{K}) \end{gathered}$		$\begin{aligned} & \text { Viscosity } \\ & \left(\mathbf{N} \cdot \mathbf{s} / \mathbf{m}^{2}\right) \end{aligned}$		$\begin{aligned} & \text { Thermal } \\ & \text { Conductivity } \\ & (\mathbf{W} / \mathbf{m} \cdot K) \end{aligned}$		$\underset{\substack{\text { PrandtI } \\ \text { Number }}}{ }$			ExpansionCoeffi-cient$\boldsymbol{\beta}_{f} 10^{6}$$\left(\mathbf{K}^{-1}\right)$	
		$\boldsymbol{v}_{f} \cdot 10^{3}$	v_{g}		$c_{p, f}$	$c_{p, g}$	$\mu_{f} \cdot 10^{6}$	$\mu_{g} \cdot 10^{6}$	$k_{f} \cdot 10^{3}$	$k_{g} \cdot 10^{3}$	$\mathrm{Pr}_{\text {f }}$	Pr_{g}			
273.15	0.00611	1.000	206.3	2502	4.217	1.854	1750	8.02	569	18.2	12.99	0.815	75.5	-68.05	273.15
275	0.00697	1.000	181.7	2497	4.211	1.855	1652^{-}	8.09	574	18.3	12.22	0.817	75.3	-32.74	275
280	0.00990	1.000	130.4	2485	4.198	1.858	1422	8.29	582	18.6	10.26	0.825	74.8	46.04	280
285	0.01387	1.000	99.4	2473	4.189	1.861	1225	8.49	590	18.9	8.81	0.833	74.3	114.1	285
290	0.01917	1.001	69.7	2461	4.184	1.864	1080	8.69	598	19.3	7.56	0.841	73.7	174.0	290
295	0.02617	1.002	51.94	2449	4.181	1.868	959	8.89	606	19.5	6.62	0.849	72.7	227.5	295
300	0.03531	1.003	39.13	2438	4.179	1.872	855	9.09	613	19.6	5.83	0.857	71.7	276.1	300
305	0.04712	1.005	29.74	2426	4.178	1.877	769	9.29	620	20.1	5.20	0.865	70.9	320.6	305
310	0.06221	1.007	22.93	2414	4.178	1.882	695	9.49	628	20.4	4.62	0.873	70.0	361.9	310
315	0.08132	1.009	17.82	2402	4.179	1.888	631	9.69	634	20.7	4.16	0.883	69.2	400.4	315
320	0.1053	1.011	13.98	2390	4.180	1.895	577	9.89	640	21.0	3.77	0.89	68.3	436.7	320
325	0.1351	1.013	11.06	2378	4.182	1.903	528	10.09	645	21.3	3.42	0.90	67.5	471.2	325
330	0.1719	1.016	8.82	2366	4.184	1.911	489	10.29	650	21.7	3.15	0.908	66.6	504.0	330
335	0.2167	1.018	7.09	2354	4.186	1.920	453	10.49	656	22.0	2.88	0.916	65.8	535.5	335
340	0.2713	1.021	5.74	2342	4.188	1.930	420	10.69	660	22.3	2.66	0.925	64.9	566.0	340
345	0.3372	1.024	4.683	2329	4.191	1.941	389	10.89	668	22.6	2.45	0.933	64.1	595.4	345
350	0.4163	1.027	3.846	2317	4.195	1.954	365	11.09	668	23.0	2.29	0.942	63.2	624.2	350
355	0.5100	1.030	3.180	2304	4.199	1.968	343	11.29	671	23.3	2.14	0.951	62.3	652.3	355
360	0.6209	1.034	2.645	2291	4.203	1.983	324	11.49	674	23.7	2.02	0.960	61.4	697.9	360
365	0.7514	1.038	2.212	2278	4.209	1.999	306	11.69	677	24.1	1.91	0.969	60.5	707.1	365
370	0.9040	1.041	1.861	2265	4.214	2.017	289	11.89	679	24.5	1.80	0.978	59.5	728.7	370
373.15	1.0133	1.044	1.679	2257	4.217	2.029	279	12.02	680	24.8	1.76	0.984	58.9	750.1	373.15
375	1.0815	1.045	1.574	2252	4.220	2.036	274	12.09	681	24.9	1.70	0.987	58.6	761	375
380	1.2869	1.049	1.337	2239	4.226	2.057	260	12.29	683	25.4	1.61	0.999	57.6	788	380
85	1.5233	1.053	1.142	2225	4.232	2.080	248	12.49	685	25.8	1.53	1.00	56.6	814	385

Table A. 4 Thermophysical Properties
of Gases at Atmospheric Pressure ${ }^{a}$

\boldsymbol{T}	ρ $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	c_{p} $(\mathrm{kJJ} / \mathrm{kg} \cdot \mathrm{K})$	$\mu \cdot 10^{7}$ $\left(\mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}\right)$	$\nu \cdot 10^{6}$ $\left(\mathrm{~m}^{2} / \mathrm{s}\right)$	$k \cdot 10^{3}$ $(\mathrm{~W} / \mathrm{m} \cdot \mathrm{K})$	$\alpha \cdot 10^{6}$ $\left(\mathrm{~m}^{2} / \mathrm{s}\right)$	Pr

Air							
100	3.5562	1.032	71.1	2.00	9.34	2.54	0.786
150	2.3364	1.012	103.4	4.426	13.8	5.84	0.758
200	1.7458	1.007	132.5	7.590	18.1	10.3	0.737
250	1.3947	1.006	159.6	11.44	22.3	15.9	0.720
300	1.1614	1.007	184.6	15.89	26.3	22.5	0.707
350	0.9950	1.009	208.2	20.92	30.0	29.9	0.700
400	0.8711	1.014	230.1	26.41	33.8	38.3	0.690
450	0.7740	1.021	250.7	32.39	37.3	47.2	0.686
500	0.6964	1.030	270.1	38.79	40.7	56.7	0.684
550	0.6329	1.040	288.4	45.57	43.9	66.7	0.683
600	0.5804	1.051	305.8	52.69	46.9	76.9	0.685
650	0.5356	1.063	322.5	60.21	49.7	87.3	0.690
700	0.4975	1.075	338.8	68.10	52.4	98.0	0.695
750	0.4643	1.087	354.6	76.37	54.9	109	0.702
800	0.4354	1.099	369.8	84.93	57.3	120	0.709
850	0.4097	1.110	384.3	93.80	59.6	131	0.716
900	0.3868	1.121	398.1	102.9	62.0	143	0.720
950	0.3666	1.131	411.3	112.2	64.3	155	0.723
1000	0.3482	1.141	424.4	121.9	66.7	168	0.726
1100	0.3166	1.159	449.0	141.8	71.5	195	0.728
1200	0.2902	1.175	473.0	162.9	76.3	224	0.728
1300	0.2679	1.189	496.0	185.1	82	238	0.719
1400	0.2488	1.207	530	213	91	303	0.703
1500	0.2322	1.230	557	240	100	350	0.685
1600	0.2177	1.248	584	268	106	390	0.688
1700	0.2049	1.267	611	298	113	435	0.685
1800	0.1935	1.286	637	329	120	482	0.683
1900	0.1833	1.307	663	362	128	534	0.677
2000	0.1741	1.337	689	396	137	589	0.672
2100	0.1658	1.372	715	431	147	646	0.667
2200	0.1582	1.417	740	468	160	714	0.655
2300	0.1513	1.478	766	506	175	783	0.647
2400	0.1448	1.558	792	547	196	869	0.630
2500	0.1389	1.665	818	589	222	960	0.613
3000	0.1135	2.726	955	841	486	1570	0.536
Ammonia ($\mathbf{N H}_{3}$)							
300	0.6894	2.158	101.5	14.7	24.7	16.6	0.887
320	0.6448	2.170	109	16.9	27.2	19.4	0.870
340	0.6059	2.192	116.5	19.2	29.3	22.1	0.872
360	0.5716	2.221	124	21.7	31.6	24.9	0.872
380	0.5410	2.254	131	24.2	34.0	27.9	0.869

Table 3.3 One-dimensional, steady-state solutions to the heat equation with no generation

	Plane Wall	Cylindrical Wall ${ }^{a}$	Spherical Wall a
Heat equation	$\frac{d^{2} T}{d x^{2}}=0$	$\frac{1}{r} \frac{d}{d r}\left(r \frac{d T}{d r}\right)=0$	$\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d T}{d r}\right)=0$
Temperature distribution	$T_{s, 1}-\Delta T \frac{x}{L}$	$T_{s, 2}+\Delta T \frac{\ln \left(r / r_{2}\right)}{\ln \left(r_{1} / r_{2}\right)}$	$T_{s, 1}-\Delta T\left[\frac{1-\left(r_{1} / r\right)}{1-\left(r_{1} / r_{2}\right)}\right]$
Heat flux ($\left.q^{\prime \prime}\right)$	$k \frac{\Delta T}{L}$	$\frac{k \Delta T}{r \ln \left(r_{2} / r_{1}\right)}$	$\frac{k \Delta T}{r^{2}\left[\left(1 / r_{1}\right)-\left(1 / r_{2}\right)\right]}$
Heat rate (q)	$k A \frac{\Delta T}{L}$	$\frac{2 \pi L k \Delta T}{\ln \left(r_{2} / r_{1}\right)}$	$\frac{4 \pi k \Delta T}{\left(1 / r_{1}\right)-\left(1 / r_{2}\right)}$
Thermal			
resistance $\left(R_{t, c o n d}\right)$			

"The critical radius of insulation is $r_{\text {tr }}=k / h$ for the cylinder and $r_{\text {cr }}=2 k / h$ for the sphere.

Radiation Data:

Stefan Boltzmann constant $=5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-1}$

Table 13.3 Special Diffuse, Gray, Two-Surface Enclosures

Large (Infinite) Parallel Planes

$$
\begin{align*}
A_{1} & =A_{2}=A \quad q_{12}=\frac{A \sigma\left(T_{1}^{4}-T_{2}^{4}\right)}{F_{12}} \tag{13.24}
\end{align*}=1 \quad \frac{1}{\varepsilon_{1}}+\frac{1}{\varepsilon_{2}}-1
$$

Long (Infinite) Concentric
Cylinders

$$
\begin{align*}
\frac{A_{1}}{A_{2}} & =\frac{r_{1}}{r_{2}} \tag{13.25}\\
F_{12} & =1
\end{align*} \quad q_{12}=\frac{\sigma A_{1}\left(T_{1}^{4}-T_{2}^{4}\right)}{\frac{1}{\varepsilon_{1}}+\frac{1-\varepsilon_{2}}{\varepsilon_{2}}\left(\frac{r_{1}}{r_{2}}\right)}
$$

Concentric Spheres

$$
\begin{align*}
\frac{A_{1}}{A_{2}} & =\frac{r_{1}^{2}}{r_{2}^{2}} \tag{13.26}\\
F_{12} & =1
\end{align*} \quad q_{12}=\frac{\sigma A_{1}\left(T_{1}^{4}-T_{2}^{4}\right)}{\frac{1}{\varepsilon_{1}}+\frac{1-\varepsilon_{2}}{\varepsilon_{2}}\left(\frac{r_{1}}{r_{2}}\right)^{2}}
$$

Small Convex Object in a Large Cavity
$A_{A_{2}, T_{2}, \varepsilon_{2},}^{A_{1}, T_{1}, \varepsilon_{1}}$

$$
\begin{equation*}
\frac{A_{1}}{A_{2}} \approx 0 \quad q_{12}=\sigma A_{1} \varepsilon_{1}\left(T_{1}^{4}-T_{2}^{4}\right) \tag{13.27}
\end{equation*}
$$

Diffusion Data:

Table A. 8 Binary Diffusion Coefficients at One Atmosphere ${ }^{a, b}$

Substance A	Substance B	$\begin{gathered} \boldsymbol{T} \\ (\mathbf{K}) \end{gathered}$	$\underset{\left(\mathbf{m}^{2} / \mathbf{s}\right)}{D_{\mathrm{AB}}}$
Gases			
NH_{3}	Air	298	0.28×10^{-4}
$\mathrm{H}_{2} \mathrm{O}$	Air	298	0.26×10^{-4}
CO_{2}	Air	298	0.16×10^{-4}
H_{2}	Air	298	0.41×10^{-4}
O_{2}	Air	298	0.21×10^{-4}
Acetone	Air	273	0.11×10^{-4}
Benzene	Air	298	0.88×10^{-5}
Naphthalene	Air	300	0.62×10^{-5}
Ar	N_{2}	293	0.19×10^{-4}
H_{2}	O_{2}	273	0.70×10^{-4}
H_{2}	N_{2}	273	0.68×10^{-4}
H_{2}	CO_{2}	273	0.55×10^{-4}
CO_{2}	N_{2}	293	0.16×10^{-4}
CO_{2}	O_{2}	273	0.14×10^{-4}
O_{2}	N_{2}	273	0.18×10^{-4}
Dilute Solutions			
Caffeine	$\mathrm{H}_{2} \mathrm{O}$	298	0.63×10^{-9}
Ethanol	$\mathrm{H}_{2} \mathrm{O}$	298	0.12×10^{-8}
Glucose	$\mathrm{H}_{2} \mathrm{O}$	298	0.69×10^{-9}
Glycerol	$\mathrm{H}_{2} \mathrm{O}$	298	0.94×10^{-9}
Acetone	$\mathrm{H}_{2} \mathrm{O}$	298	0.13×10^{-8}
CO_{2}	$\mathrm{H}_{2} \mathrm{O}$	298	0.20×10^{-8}
O_{2}	$\mathrm{H}_{2} \mathrm{O}$	298	0.24×10^{-8}
H_{2}	$\mathrm{H}_{2} \mathrm{O}$	298	0.63×10^{-8}
N_{2}	$\mathrm{H}_{2} \mathrm{O}$	298	0.26×10^{-8}
Solids			
O_{2}	Rubber	298	0.21×10^{-9}
N_{2}	Rubber	298	0.15×10^{-9}
CO_{2}	Rubber	298	0.11×10^{-9}
He	SiO_{2}	293	0.4×10^{-13}
H_{2}	Fe	293	0.26×10^{-12}
Cd	Cu	293	0.27×10^{-18}
Al	Cu	293	0.13×10^{-33}

${ }^{a}$ Adapted with permission from References 20, 21, and 22.
${ }^{b}$ Assuming ideal gas behavior, the pressure and temperature dependence of the diffusion coefficient for a binary mixture of gases may be estimated from the relation

$$
D_{\mathrm{AB}} \propto p^{-1} T^{3 / 2}
$$

Table A. 9 Henry's Constant for Selected Gases in Water at Moderate Pressure ${ }^{a}$

$\boldsymbol{H}=\boldsymbol{p}_{A, i} / x_{A, i}$ (bars)								
T (K)	$\mathbf{N H}_{3}$	Cl_{2}	$\mathrm{H}_{2} \mathrm{~S}$	SO_{2}	CO_{2}	CH_{4}	O_{2}	H_{2}
273	21	265	260	165	710	22,880	25,500	58,000
280	23	365	335	210	960	27,800	30,500	61,500
290	26	480	450	315	1300	35,200	37,600	66,500
300	30	615	570	440	1730	42,800	45,700	71,600
310	-	755	700	600	2175	50,000	52,500	76,000
320	-	860	835	800	2650	56,300	56,800	78,600
323	-	890	870	850	2870	58,000	58,000	79,000

${ }^{a}$ Adapted with permission from Reference 23.
Table A. 10 The Solubility of
Selected Gases and Solids ${ }^{a}$

	Solid	T (\mathbf{K})	$S=C_{A, i} / \boldsymbol{p}_{A, i}$ $\left(\mathbf{k m o l} / \mathbf{m}^{3} \cdot \mathbf{b a r}\right)$
Gas	Rubber	298	3.12×10^{-3}
O_{2}	Rubber	298	1.56×10^{-3}
$\mathrm{~N}_{2}$	Rubber^{2}	298	40.15×10^{-3}
CO_{2}	SiO_{2}	293	0.45×10^{-3}
He	Ni	358	9.01×10^{-3}
H_{2}			

"Adapted with permission from Reference 22.

Table 14.1 Summary of Species Diffusion Solutions for Stationary

Media with Specified Surface Concentrations ${ }^{a}$

Geometry	Species Concentration Distribution, $x_{\mathrm{A}}(x)$ or $x_{\mathrm{A}}(r)$	Species Diffusion Resistance, $R_{m, ~ d i f ~}^{\prime}$

$$
x_{A}(x)=\left(x_{A, s 2}-x_{A, s 1}\right) \frac{x}{L}+x_{A, s 1} \quad R_{m, \mathrm{dif}}={\frac{L}{D_{\mathrm{AB}} A}}^{b}
$$

$$
x_{A}(r)=\frac{x_{A, s 1}-x_{A, s 2}}{\ln \left(r_{1} / r_{2}\right)} \ln \left(\frac{r}{r_{2}}\right)+x_{A, s 2} \quad R_{m, \text { dif }}=\frac{\ln \left(r_{2} / r_{1}\right)^{c}}{2 \pi L D_{\mathrm{AB}}}
$$

$$
x_{A}(r)=\frac{x_{A, s 1}-x_{A, s 2}}{1 / r_{1}-1 / r_{2}}\left(\frac{1}{r}-\frac{1}{r_{2}}\right)+x_{A, s 2}
$$

$$
R_{m, \text { dif }}=\frac{1}{4 \pi D_{\mathrm{AB}}}\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)^{c}
$$

${ }^{a}$ Assuming C and D_{AB} are constant.
${ }^{b} N_{\mathrm{A}, x}=\left(C_{\mathrm{A}, s 1}-C_{\mathrm{A}, s 2}\right) / R_{m, \text { dif }}$.
${ }^{c} N_{\mathrm{A}, r}=\left(C_{\mathrm{A}, s 1}-C_{\mathrm{A}, s 2}\right) / R_{m, \text { dif }}$.

