

PROGRAM : BACCALAUREUS TECHNOLOGIAE

ENGINEERING: METALLURGY

SUBJECT : **MECHANICAL METALLURGY IV**

<u>CODE</u> : TMP42-2

<u>DATE</u> : FINAL EXAMINATION

23/05/2019

<u>DURATION</u> : 12:30 – 15:30

WEIGHT : 40:60

TOTAL MARKS : 95

ASSESSOR : MR E. GONYA

MODERATOR : MR JM PROZZI FILE: NO 5138

NUMBER OF PAGES : 3 PAGES

INSTRUCTIONS : ANSWER ALL QUESTIONS

REQUIREMENTS : CALCULATOR

(3)

QUESTION 1 (40 marks)

between two edge dislocations?

1.1 Briefly discuss how does cross-slip influence the strain hardening coefficient of metals and	
alloys.	(4)
1.2 Brittle failures at low temperatures are prevented by ensuring a minimum of 3:1 in explain the significance of maintaining this ratio.	Mn:C (5)
1.3 What are the limitations of Charpy impact test and how it can be overcome. Illustrate your	
answer by using a suitable digram	(5)
1.4 Why are charpy impact values for FCC materials independent of temperatures.	(3)
1.5 Name and briefly explain two metallurgical phenomena associated with the environment	nent
that leads to brittle failure.	(10)
1.6 Why do FCC materials deform easily as compared to BCC materials?.	(4)
1.7 Use sketches to differentiate between a jog and a kink formed as results of interaction	tion
between the two edge dislocations.	(6)
1.8 What will be the contribution of jogs towards plastic deformation as a result of interaction	ction

(5)

QUESTION 2 (38 Marks)

- 2.1 A tensile test was conducted on a metal specimen, and it was found that a true strain of 0.25 is produced when a true stress of 575 MPa is applied; for the same metal, the value of K is 806 MPa. Calculate the true strain that results from the application of a true stress of 600 MPa.
 (6)
- 2.2 Determine the partial dislocations formed from $(a/2)[\bar{1}10]$ slip direction on the $(\bar{1}\bar{1}\bar{1})$ plane in the FCC material. (12)
- 2.3 Determine whether the dislocation dissociation is feasible on the reaction found in 2.2 (8)
- 2.4 Derive an expression linking the yield strength and the reduction in cross sectional at the yield point. (6)
- 2.5 Use the expression derived in 2.4 to calculate 0.2% offset yield strength given that the flow stress-strain curve equation for the material is $\sigma = 65\bar{\epsilon}^{0.384}$ (6)

QUESTION 3 (17 Marks)

- 3.1 Use a suitable dislocation theory model to explain the following:
- 3.1.1 Causes of strengthening during strain hardening.
- 3.1.2 The dependence of yield strength on the grain size of the material during grain-boundary strengthening mechanism. (5)
- 3.2 What is dislocation core energy and its role in strengthening mechanism? (3)
- 3.3 Would you expect the energy of the crystal to be higher or lower after the formation of a jog between two edge dislocations? Apply suitable equation when giving your answer. (4)