PROGRAM	$:$ BACHELOR OF ENGINEERING TECHNOLOGY
	ENGINEERING : CIVIL
$\underline{\text { SUBJECT }}$	$:$ STRUCTURAL ANALYSIS 3A
$\underline{\text { CODE }}$	$:$ STRCIA3
$\underline{\text { DATE }}$	$:$ WINTER SSA EXAMINATION
	19 JULY 2019
$\underline{\text { DURATION }}$	$:($ SESSION 1) 08:00-11:00
$\underline{\text { WEIGHT }}$	$: 40: 60$
$\underline{\text { TOTAL MARKS }}$	$: 100$

ASSESSOR	$:$ MR F THAIMO
MODERATOR	$:$ DR J MAHACHI
NUMBER OF PAGES	$: 4$ PAGES

INSTRUCTIONS	$:$NON-PROGRAMABLE POCKET CALCULATOR MAY BE USED.
REQUIREMENTS	$: 2$ SHEETS OF A4 GRAPH PAPER PER CANDIDATE.

INSTRUCTIONS TO STUDENTS

PLEASE ANSWER ALL QUESTIONS

QUESTION 1

Figure below shows a propped cantilever beam subjected to a point load as shown on the figure.
a) Calculate the magnitude of the collapse load (W) if the fully plastic moment (M_{P}) of the beam section is 150 kNm .
(Please take note: use the STATIC METHOD, i.e. reactant and free bending moment, in your analysis)
b) Calculate the reactions at the supports on the verge of collapse.

Figure 1

QUESTION 2

The frame shown below is fixed at both supports A and D. The fully plastic bending moment (M_{P}) is 200 kNm .
a) Under the loading shown, determine the collapse mode and the collapse load (w) on the verge of collapse.
(Please note: use the VIRTUAL WORK (displacement) method in your analysis).
b) Calculate the vertical and horizontal components of the reactions at the supports.
(Please note: no Bending Moment, Shear Force or Axial Force Diagrams are required).

SUBJECT CODE STRCI3A

QUESTION 3

The continuous beam shown below is of a cross-section with constant flexural rigidity (EI).
a) Using MOMENT DISTRIBUTION method determine the reactant (end) moments at the supports/joints.
b) Calculate the support reactions.
c) Draw the Shear Force and Bending Moment Diagrams for the beam on the graph paper provided.

Figure 3

QUESTION 3

The pin-jointed plane truss shown below is supported by rollers at \mathbf{A} and by pin (hinged) at \mathbf{B}, and is subjected to loading as shown. The truss members are all made from steel with Young's modulus of $200 \mathrm{GP}_{\mathrm{a}}$ and cross-sectional area of $500 \mathrm{~mm}^{2}$.
Using Strain Energy method (Castigliano's Theorem), calculate the vertical and horizontal deflections (displacements) of point E on the truss.

Figure 4

