

PROGRAM : BACHELOR OF ENGINEERING TECHNOLOGY

ENGINEERING : CIVIL

SUBJECT : **STRUCTURAL ANALYSIS 3A**

CODE : STRCIA3

DATE : WINTER SSA EXAMINATION

19 JULY 2019

<u>DURATION</u> : (SESSION 1) 08:00 - 11:00

WEIGHT : 40:60

TOTAL MARKS : 100

ASSESSOR : MR F THAIMO

MODERATOR : DR J MAHACHI

NUMBER OF PAGES : 4 PAGES

INSTRUCTIONS : NON-PROGRAMABLE POCKET CALCULATOR MAY

BE USED.

REQUIREMENTS : 2 SHEETS OF A4 GRAPH PAPER PER CANDIDATE.

INSTRUCTIONS TO STUDENTS

PLEASE ANSWER ALL QUESTIONS

QUESTION 1

Figure below shows a propped cantilever beam subjected to a point load as shown on the figure.

- a) Calculate the magnitude of the collapse load (W) if the fully plastic moment (M_P) of the beam section is 150kNm.
 (Please take note: use the STATIC METHOD, i.e. reactant and free bending
 - moment, in your analysis)
- b) Calculate the reactions at the supports on the verge of collapse.

Figure 1

[12]

QUESTION 2

The frame shown below is fixed at both supports A and D. The fully plastic bending moment (M_P) is 200kNm.

- a) Under the loading shown, determine the collapse mode and the collapse load (w) on the verge of collapse.
 - (Please note: use the VIRTUAL WORK (displacement) method in your analysis).
- b) Calculate the vertical and horizontal components of the reactions at the supports.

(Please note: no Bending Moment, Shear Force or Axial Force Diagrams are required).

[20]

QUESTION 3

The continuous beam shown below is of a cross-section with constant flexural rigidity (EI).

- a) Using MOMENT DISTRIBUTION method determine the reactant (end) moments at the supports/joints.
- b) Calculate the support reactions.
- c) Draw the Shear Force and Bending Moment Diagrams for the beam on the graph paper provided.

[34]

QUESTION 3

The pin-jointed plane truss shown below is supported by rollers at $\bf A$ and by pin (hinged) at $\bf B$, and is subjected to loading as shown. The truss members are all made from steel with Young's modulus of 200 GP_a and cross-sectional area of 500 mm².

Using **Strain Energy** method (Castigliano's Theorem), calculate the vertical and horizontal deflections (displacements) of point E on the truss.

[34]

TOTAL = 100