PROGRAM	$:$ BACCALAUREUS INGENERIAE
MECHANICAL ENGINEERING SCIENCE	
$\underline{\text { SUBJECT }}$	$:$ FLUID DYNAMICS 3A
$\underline{\text { CODE }}$	$:$ STR3A
$\underline{\text { DATE }}$	$:$ SUPPLEMENTARY EXAM (JULY 2019)
$\underline{\text { DURATION }}$	$: 5$ HOURS
$\underline{\text { WEIGHT }}$	$: 100$
$\underline{\text { TOTAL MARKS }}$	$: 50$

EXAMINER : Dr. S Kruger

MODERATOR : Dr. CR Bester
NUMBER OF PAGES : 5 PAGES AND 5 ANNEXURES

INSTRUCTIONS TO CANDIDATES:

PLEASE ANSWER ALL THE QUESTIONS. DON'T WRITE IN PENCIL/RED PEN

QUESTION 1 [20]

Consider two infinitely long parallel plates (Figure 1), where the top plate is moving to the right at a velocity U_{1} of while the lower plate is moving at a velocity U_{2} also to the right.

- Derive with the aid of the Navier-Stokes equations the velocity profile for laminar, fully developed, incompressible flow in the space between the two plates if the volume flow per unit width is Q .
- Determine an expression for the pressure loss over a length L.
- Determine the POSITION and VALUE of the maximum velocity

NOTE: Show all algebraic calculations.

Figure 1

QUESTION 2 [12]

In a certain steady, two-dimensional flow field the fluid may be assumed to be ideal and weight of the fluid (specific weight $=7850 \mathrm{~N} / \mathrm{m}^{3}$) is the only body force. The x -component of velocity is known to be $u=6 x$ which gives the velocity in m / s when x is measured in meters. The y component of velocity is known to be a function of y only. The y -axis is vertical, and at the origin the velocity is zero.
3.1 Determine the y-component of velocity so that the continuity equation is satisfied.
3.2 Can the difference in pressures between the points $\mathrm{x}=0.3 \mathrm{~m}, \mathrm{y}=0.3 \mathrm{~m}$ and $\mathrm{x}=$ 0.3 m and $\mathrm{y}=1.2 \mathrm{~m}$ be determined from the Bernoulli equation? If so, determine the value in $\mathrm{N} / \mathrm{m}^{2}$. If not, explain.

QUESTION 3 [19]

Find an expression for the velocity potential and stream function for a cylinder with circulation
Determine expressions for the radial and transverse velocity components
Make use of Bernoulli's equation to find an expression for the boundary pressure around a cylinder with circulation. Refer to Figure 2.

Show that the lift is given by $L=\rho V_{0} A$
Hint: $\sin ^{2} \theta=\frac{1}{2}(1-\cos (2 \theta))$ and $\int \sin ^{3} d u=\frac{1}{3} \cos ^{3} u-\cos u+C$

NB: Show all the steps.

Figure 2

QUESTION 4 [17]

Air flows from a reservoir where $\mathrm{P}_{01}=$ 300 kPa and $\mathrm{T}_{01}=500 \mathrm{~K}$ through a throat to section 1 as shown in Figure 3, where there is a normal shock wave.

Figure 3

Calculate the following:
a) The static pressure before the shock
b) The static pressure after the shock
c) The new stagnation pressure after the shock
d) The new critical area
e) The stagnation pressure at point 3
f) A_{3}
g) P_{3}
h) T_{03}

QUESTION 5 [10]

Air is heated as it flows subsonically through a $10 \mathrm{~cm} \times 10 \mathrm{~cm}$ square duct. The properties of air at the inlet are maintained at $\mathrm{Ma}_{1}=0.4, \mathrm{P}_{1}=400 \mathrm{kPa}$, and $\mathrm{T}_{1}=360 \mathrm{~K}$ at all times. Disregarding frictional losses, determine the highest rate of heat transfer to the air in the duct without affecting the inlet conditions.

Use $R=0.287 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$, and $k=1.4$

QUESTION 6 [13]

In the autogyro (Figure 4), the lift is developed by freely rotating vanes. The rotation is caused by the aerodynamic forces on the vanes themselves. Using flat-plate theory, what is the aerodynamic torque needed to overcome skin friction for an angular speed of the vanes of $50 \mathrm{rev} / \mathrm{min}$?

Take each vane to be a flat plate of dimension 4.5 m by 0.3 m . The air is at a temperature of $10^{\circ} \mathrm{C}$. Transition takes place at $\mathrm{Re}_{c r}=3.2 \times 10^{5}$. Consider as an approximation, the equation for smooth plates, low Reynolds number turbulent flow to be valid for the turbulent boundary layer. Take $v=1.55 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$ and $\mathrm{P}=101.404 \mathrm{kPa}$.

Figure 4
QUESTION 7 [9]

Ocean liners have in the past been equipped with retractable hydrofoils for purposes of maintaining stability in heavy water.

If the ship is moving at 40 knots, what is the skin friction drag on the hydrofoil if each is 2 m long and 2 m wide? Transition takes place at $\mathrm{Re}_{\mathrm{cr}}=10^{6} .1 \mathrm{knot}=0.5144 \mathrm{~m} / \mathrm{s}$. Compute the skin friction drag of the hydrofoils taking the turbulent boundary layer over the entire length. Then calculate skin drag, taking into account the laminar portion of the boundary layer.

For seawater take $\mu=1.395 \times 10^{-3} \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}$, and $\rho=1026 \mathrm{~kg} / \mathrm{m}^{3}$.

ANNEXURE

FORMULA SHEET

$$
\begin{aligned}
& \rho\left(\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}\right)=-\frac{\partial p}{\partial x}+\rho g_{x}+\mu\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right) \\
& \rho\left(\frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z}\right)=-\frac{\partial p}{\partial y}+\rho g_{y}+\mu\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}+\frac{\partial^{2} v}{\partial z^{2}}\right) \\
& \rho\left(\frac{\partial w}{\partial t}+u \frac{\partial w}{\partial x}+v \frac{\partial w}{\partial y}+w \frac{\partial w}{\partial z}\right)=-\frac{\partial p}{\partial z}+\rho g_{z}+\mu\left(\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}+\frac{\partial^{2} w}{\partial z^{2}}\right) \\
& \bar{\omega}=\omega_{x} \hat{i}+\omega_{y} \hat{j}+\omega_{z} \hat{k}=\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)+\frac{1}{2}\left(\frac{\partial w}{\partial y}-\frac{\partial v}{\partial z}\right)+\frac{1}{2}\left(\frac{\partial u}{\partial z}-\frac{\partial w}{\partial x}\right) \\
& \frac{\partial \phi}{\partial r}=\frac{1}{r} \frac{\partial \psi}{\partial \theta} \quad \frac{1}{r} \frac{\partial \phi}{\partial \theta}=-\frac{\partial \psi}{\partial r} \quad \oiint_{C S} \bar{T} d A+\iiint_{C V} \bar{B} \rho d v=\oint_{C S} \bar{V}(\rho \bar{V} d A)+\frac{\partial}{\partial t} \iiint_{C V} \bar{V} \rho d v \\
& \frac{\partial V_{x}}{\partial x}+\frac{\partial V_{y}}{\partial y}+\frac{\partial V_{z}}{\partial z}=0 \quad \frac{p}{\gamma}+z+\frac{V^{2}}{2 g}=\text { const } \quad \gamma=\rho g \quad \Gamma=\oint_{c} \bar{V} \cdot d s \\
& V_{x}=\frac{\partial \psi}{\partial y} \quad V_{y}=-\frac{\partial \psi}{\partial x} \quad V_{x}=\frac{\partial \phi}{\partial x} \quad V_{y}=\frac{\partial \phi}{\partial y} \quad V_{r}=\frac{1}{r} \frac{\partial \psi}{\partial \theta} \quad \operatorname{Re}=\frac{\rho V D}{\mu}=\frac{V D}{v} \\
& V_{r}=\frac{\partial \phi}{\partial r} \quad V_{\theta}=\frac{\partial \phi}{r \partial \theta} \quad \frac{\partial \phi}{\partial r}=\frac{1}{r} \frac{\partial \psi}{\partial \theta} \quad \frac{1}{r} \frac{\partial \phi}{\partial \theta}=-\frac{\partial \psi}{\partial r} \quad V_{\theta}=-\frac{\partial \psi}{\partial r} \quad C_{f}=\frac{D}{\frac{1}{2} \rho U^{2} A} \\
& \frac{\partial \psi}{\partial y}=\frac{\partial \phi}{\partial x} \\
& c=\sqrt{k R T} \\
& \tau_{w}=\left(\frac{d u}{d y}\right)_{w} c_{f}=\frac{\tau_{w}}{\frac{1}{2} \rho U^{2}} \\
& \frac{\partial \psi}{\partial x}=-\frac{\partial \phi}{\partial y} \\
& C_{f}=\frac{0.074}{\operatorname{Re}_{L}^{\frac{1}{5}}}-\frac{A}{\operatorname{Re}_{L}} \\
& C_{f}=\frac{0.455}{(\log \operatorname{Re})^{2.58}}-\frac{A}{\operatorname{Re}} \quad D=\int_{A} \tau_{w} d A \\
& C_{f}=\frac{1.328}{\sqrt{\operatorname{Re}_{L}}} \quad C_{f}=\frac{D}{\frac{1}{2} \rho U^{2} A}
\end{aligned}
$$

$\operatorname{Re}_{c r}$	300000	500000	10^{6}	3×10^{6}
A	1050	1700	3300	8700

$$
T_{0}=T+\frac{V^{2}}{2 c_{p}} \quad \frac{d Q}{d m}=c_{p}\left(T_{0}\right)_{2}-c_{p}\left(T_{0}\right)_{1}=c_{p}\left(T_{02}-T_{01}\right)
$$

One－dimensional isentropic relations \dagger									
M	\boldsymbol{A} / A^{*}	p / p of	ρ / P	T / T_{0}	M	A / A^{*}	p / p_{0}	p / p_{0}	ryo
0.00		1.000	${ }^{7} 1.000$	1.000	0.86	1.02	0.617	0.708	$0.87{ }^{2}$
0.01	57.87	0.9999	0.9999	0.9999	0.88	1.01	0.604	0.698	－0．871
0.02	28.94	0.9997	0.9999	0.9999	0.90	1.01	0.591	0.688	0.805
0.04	14.48	0.999	0.999	0.999	0.92	1.01	0.578	0.676	${ }^{0.855}$
0.06	9.67	0.997	0.998	0.999	0.94	1.00	0.566	0.666	． 0.850
0.08 0.10	7.26 5.82	0.996	0.997	0.999	0.96	1.00	0.553	0.655	0.844
0.10	5.82 4.86	0.993	0.995	0.998	0.98	1.00	0.541	0.645	0.839 ，
0.12	4.86	0.990	0.993	0.997	1.00	1.00	0.528	0.632	0.833
0.14	4.18	0.986	0.990	0.996	1.02	1.00	0.516	0.623	0.828
0.16	3.67	0.982	0.987	0.995	1.04	1.00	0.504	0.613	0.822
0.18	3.28	0.978	0.984	0.994	1.06	1.00	0.492	0.602	0.817
0.20	2.96	0.973	0.980	0.992	1.08	1.01	0.480	0.592	$0.810^{\text {c }}$
0.22	2.71	0.967	0.976	0.990	1.10	1.01	0.468	0.582	0.805
0.24	2.50	0.961	0.972	0.989	1.12	1.01	0.457	0.571	0.799
0.26 0.28	2.32 2.17	0.954 0.947	0.967	0.987	1.14	1.02	0.445	0.561	0.794
0.28	2.17	0.947	0.962	0.985	1.16	1.02	0.434	0.551	0.788
0.30 0.32	2.04	0.939	0.956	0.982	1.18	1.02	0.423	0.541	0.782
0.34	1.92 1.82	0.932	0.951	0.980	1.20	1.03	0.412	0.531	0.776
0.36	1.74	0.914	0.938	0.977 0.975	1.22 1.24	1.04 1.04	0.402 0.391	0.521 0.512	$\begin{aligned} & 0.7712 \\ & 0.765 \end{aligned}$
0.38	1.66	0.905	0.931	0.972	1.26	1.05	0.381	0.502	0.759
0.40	1.59	0.896	0.924	0.969	1.28	1.06	0.371	0.492	0.753
0.42	1.53	0.886	0.917	0.966	1.30	1.07	0.361	0.483	0.747
0.44	1.47	0.876	0.909	0.963	1.32	1.08	0.351	0.474	0.742 ，
0.46	1.42	0.865	0.902	0.959	1.34	1.08	0.342	0.464	$0.73{ }^{\text {² }}$
0.48	1.38	0.854	0.893	0.956	1.36	1.09	0.332	0.455	0.730
0.50	1.34	0.843	0.885	0.952	1.38	1.10	0.323	0.446	0.724
0.52	1.30	0.832	0.877	0.949	1.40	1.11	0.314	0.437	0.718
0.54	1.27	0.820	0.868	0.945	1.42	1.13	0.305	0.429	0.713 亿
0.56	1.24	0.808	0.859	0.941	1.44	1.14	0.297	0.420	0.707 ，
0.58	1.21	0.796	0.850	0.937	1.46	1.15	0.289	0.412	0.701 ：
0.60	1.19	0.784	0.840	0.933	1.48	1.16	0.280	0.403	0.695
0.62	1.17	0.772	0.831	0.929	1.50	1.18	0.272	0.395	0.690 ，
0.64	1.16	0.759	0.821	0.924	1.52	1.19	0.265	0.387	0.684
0.66	1.13	0.747	0.812	0.920	1.54	1.20	0.257	0.379	0.678 近
0.68	1.12	0.734	0.802	0.915	1.56	1.22	0.250	0.371	0.672 \％
0.70	1.09	0.721	0.792	0.911	1.58	1.23	0.242	0.363	0.667
． 72	1.08	0.708	0.781	0.906	1.60	1.25	0.235	0.356	0.661 翟
0.74	1.07	0.695	0.771	0.901	1.62	1.27	0.228	0.348	0.656
0.76	1.06	0.682	0.761	0．89\％	1.64	1.28	0.222	0.341	0.650
0.78	1.05	0.669	0.750	0.891	1.66	1.30	0.215	0.334	0.645 㹲
0．80	1.04	0.656	0.740	0.886	1.68	1.32	0.209	0.327	0.639 晹
0.82	1.03	0.643	0.729	0.881	1.70	1.34	0.203	0.320	0.634 管
0.84	1.02	0.630	0.719	0.876	1.72	1.36	0.197	0.313	0.628 置

table bs Continued

M	$\boldsymbol{A} / \boldsymbol{A}^{*}$	p / p_{0}	p / p_{0}	T / T_{0}	M	A / A^{*}	$1 / \mathrm{Pc}$	P／Po	T / T_{0}
1.74	1.38	0.191	0.306	0.623	2.50	2.64	0.059	0.132	0.444
1.76	1.40	0.185	0.300	0.617	2.52	2.69	0.057	0.129	0.441
1.78	1.42	0.179	0.293	0.612	2.54	2.74	0.055	0.126	0.437
1.80	1.44	0.174	0.287	0.607	2.56	2.79	0.053	0.123	0.433
1.82	1.46	0.169	0.281	0.602	2.58	2.84	0.052	0.121	0.429
1.84	1.48	0.164	0.275	0.596	2.60	2.90	0.050	0.118	0.425
1.86	1.51	0.159	0.269	0.591	2.62	2.95	0.049	0.115	0.421
1.88	1.53	0.154	0.263	0.586	2.64	3.01	0.047	0.113	0.418
1.90	1.56	0.149	0.257	0.581	2.66	3.06	0.046	0.110	0.414
1.92	1.58	0.145	0.251	0.576	2.68	3.12	0.044	0.108	0.410
1.94	1.61	0.140	0.246	0.571	2.70	3.18	0.043	0.106	0.407
1.96	1.63	0.136	0.240	0.566	2.72	3.24	0.042	0.103	0.403
1.98	1.66	0.132	0.235	0.561	2.74	＋3．31	0.040	0.101	0.400
2.00	1.69	0.128	0.230	0.556	2.76	3.37	0.039	0.099	0.396
2.02	1.72	0.124	0.225	0.551	2.78	3.43	0.038	0.097	0.393
2.04	1.75	0.120	0.220	0.546	2.80	3.50	0.037	0.095	0.389
2.06	1.78	0.116	0.215	0.541	2.82	3.57	0.036	0.093	0.386
2.08	1.81	0.113	0.210	0.536	2.84	3.64	0.035	0.091	0.383
2.10	1.84	0.109	0.206	0.531	2.86	3.71	0.034	0.089	0.379
2.12	1.87	0.106	0.201	0.526	2.88	3.78	0.033	0.087	0.376
2.14	1.90	0.103	0.197	0.522	2.90	3.85	0.032	0.085	0.373
2.16	1.94	0.100	0.192	0.517	2.92	3.92	0.031	0.083	0.370
2.18	1.97	0.097	0.188	0.513	2.94	4.00	0.030	0.081	0.366
2.20	2.01	0.094	0.184	0.508	2.96	4.08	0.029	0.080	0.363
2.22	2.04	0.091	0.180	0.504	2.98	4.15	0.028	0.078	0.360
2.24	2.08	0.088	0.176	0.499	3.00	4.23	0.027	0.076	0.357
2.26	2.12	0.085	0.172	0.495	3.10	4.66	0.023	0.0685	0.342
2.28	2.15	0.083	0.168	0.490	3.20	5.12	0.020	0.062	0.328
2.30	2.19	0.080	0.165	0.486	3.3	5.63	0.0175	0.0555	0.315
2.32	2.23	0.078	0.161	0.482	3.4	6.18	0.015	0.050	0.302
2.34	2.27	0.075	0.157	0.477	3.5	6.79	0.013	0.045	0.290
2.36	2.32	0.073	0.154	0.473	3.6	7.45	0.0114	0.041	0.278
2.38	2.36	0.071	0.150	0.469	3.7	8.17	0.0099	0.037	0.2675
2.40	2.40	0.068	0.147	0.465	3.8	8.95	0.0086	0.0335	0.257
2.42	2.45	0.066	0.144	0.461	3.9	9.80	0.0075	0.030	0.247
2.44	2.49	0.064	0.141	0.456	4.0	10.72	0.0066	0.028	0.238
2.46	2.54	0.062	0.138	0.452					
2.48	2.59	0.060	0.135	0.448					

		jginc	抎云苓交	क寺古	Wiww wis		べす。	示ご安	¢우웅	$3{ }^{3}$
$\begin{aligned} & \text { oo o o } \\ & \text { No iow i. } \end{aligned}$	$\begin{aligned} & \circ \circ \circ 0 \\ & \text { I 훙 } 0 . \end{aligned}$	0000 989 $\omega \infty$ U－		$\begin{aligned} & \text { 오오오 } \\ & \text { д. } \end{aligned}$	$\begin{aligned} & 0000 \\ & \text { y } y=3 \\ & \infty, y \end{aligned}$		0000 	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned} 0$		3
$\omega \omega \omega \omega$ 	$\omega \omega \omega \mathrm{N}$䓌気氷号	NNNN かiong い○すい	NNNN O				可守灾总		F98\％	010
						ত-	古示ご㤂	\％ 0 ¢ 080	\％－6\％	
		$\begin{aligned} & 0000 \\ & 0.0 \\ & \infty 0_{0}^{0} 0 \\ & \infty \\ & \infty \end{aligned}$		0000 우눈云 ${ }_{\infty}$	$\begin{aligned} & \text { OOO } \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & \hline 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 옹ㅇㅇㅇ웅 } \\ & \text { BO O} \end{aligned}$			\％
	岕志岕	芯	¢	\％ 2.0	\％－\％	全응	웅ㅇㅇㅇㅇㅇ	－8\％ 80	888	
MNNN 	nunu台㖛古	NNNN 		［込N			N		－－－	3
$\begin{aligned} & \text { 응o } \\ & \text { in in in } \end{aligned}$	$\begin{aligned} & 0 \circ o o \\ & i n \\ & i, ~ i n \\ & i n \end{aligned}$	$\begin{aligned} & \text { oo o o } \\ & \text { Bi山心N心岕 } \end{aligned}$			$\begin{aligned} & \text { o o o o } \\ & \text { 哕岕岕岕 } \end{aligned}$					3
		$\begin{aligned} & \text { aqa } \\ & \text { gi山己 } \\ & \text { gi山 } \end{aligned}$		unuun 						010
					osio	する式芯				－-12
$\begin{aligned} & 0000 \\ & \text { a } \begin{array}{l} \text { it } \\ \infty \\ \infty \end{array} \end{aligned}$	\circ o o o ＋in in in din		0000 난영 ふuゃN			0000 고옹		$\begin{aligned} & 0000 \\ & \text { y } 30 y \\ & t y_{0} y \end{aligned}$		－ 0
				gidej	気艺荷宫	$\stackrel{+}{+} \underset{\sim}{+}$			－	$\underset{\sim}{\text { cos }}$

TABLE b. 8
Rayleigh line \dagger

M	$\frac{T_{0}}{T_{0}^{*}}$	$\frac{T}{T^{*}}$	$\frac{p}{p^{*}}$	$\frac{p_{0}}{p_{0}^{*}}$	$\frac{V}{V^{*}}$	M	$\frac{T_{0}}{T_{0}^{*}}$	$\frac{T}{T^{*}}$	$\frac{p}{p^{*}}$	$\frac{p_{0}}{p_{0}^{*}}$	$\frac{V}{V^{*}}$
0	0	0	2.40	1.27	0	0.86	0.984	1.028	1.179	1.010	0.872
0.01	0.000	0.000	2.40	1.27	0.000	0.88	0.988	1.027	1.152	1.007	0.892
0.02	0.002	0.002	2.40	1.27	0.001	0.90	0.992	1.024	1.125	1.005	0.911
0.04	0.008	0.009	2.39	1.27	0.004	0.92	0.995	1.021	1.098	1.003	0.930
0.06	0.017	0.020	2.39	1.26	0.009	0.94	0.997	1.017	1.073	1.002	0.948
0.08	0.030	0.036	2.38	1.26	0.015	0.96	0.999	1.012	1.048	1.001	0.966
0.10	0.047	0.056	2.37	1.26	0.024	0.98	1.000	1.006	1.024	1.000	0.983
0.12	0.067	0.080	2.35	1.26	0.034	1.00	1.000	1.000	1.000	1.000	1.000
0.14	0.089	0.107	2.34	1.25	0.046	1.02	1.000	0.993	0.977	1.000	1.016
0.16	0.115	0.137	2.32	1.25	0.059	1.04	0.999	0.986	0.954	1.001	1.032
0.18	0.143	0.171	2.30	1.24	0.074	1.06	0.998	0.978	0.933	1.002	1.048
0.20	0.174	0.207	2.27	1.23	0.091	1.08	0.996	0.969	0.911	1.003	1.063
0.22	0.206	0.244	2.25	1.23	0.109	1.10	0.994	0.960	0.891	1.005	1.078
0.24	0.239	0.284	2.22	1.22	0.128	1.12	0.991	0.951	0.871	1.007	1.092
0.26	0.274	0.325	2.19	1.21	0.148	1.14	0.989	0.942	0.851	1.010	1.106
0.28	0.310	0.367	2.16	1.21	0.170	1.16	0.986	0.932	0.832	1.012	1.120
0.30	0.347	0.409	2.13	1.20	0.192	1.18	0.982	0.922	0.814	1.016	1.133
0.32	0.384	0.451	2.10	1.19	0.215	1.20	0.979	0.912	0.796	1.019	1.146
0.34	0.421	0.493	2.06	1.18	0.239	1.22	0.975	0.902	0.778	1.023	1.158
0.36	0.457	0.535	2.03	1.17	0.263	1.24	0.971	0.891	0.761	1.028	1.171
0.38	0.493	0.576	2.00	1.16	0.288	1.26	0.967	0.881	0.745	1.033	1.182
0.40	0.529	0.615	1.96	1.16	0.314	1.28	0.962	0.870	0.729	1.038	1.194
0.42	0.564	0.653	1.92	1.15	0.340	1.30	0.958	0.859	0.713	1.044	1.205
0.44	0.597	0.690	1.89	1.14	0.366	1.32	0.953	0.848	0.698	1.050	1.216
0.46	0.630	0.725	1.85	1.13	0.392	1.34	0.949	0.838	0.683	1.056	1.226
0.48	0.661	0.759	1.81	1.12	0.418	1.36	0.944	0.827	0.669	1.063	1.237
0.50	0.691	0.790	1.78	1.11	0.444	1.38	0.939	0.816	0.655	1.070	1.247
0.52	0.720	0.820	1.74	1.10	0.471	1.40	0.934	0.805	0.641	1.078	1.256
0.54	0.747	0.847	1.70	1.10	0.497	1.42	0.929	0.795	0.628	1.086	1.266
0.56	0.772	0.872	1.67	1.09	0.523	1.44	0.924	0.784	0.615	1.094	1.275
0.58	0.796	0.896	1.63	1.08	0.549	1.46	0.919	0.773	0.602	1.103	1.284
0.60	0.819	0.917	1.60	1.08	0.574	1.48	0.914	0.763	0.590	1.112	1.293
0.62	0.840	0.936	1.56	1.07	0.600	1.50	0.909	0.752	0.578	1.122	1.301
0.64	0.859	0.953	1.52	1.06	0.625	1.52	0.904	0.742	0.567	1.132	1.309
0.66	0.877	0.968	1.49	1.06	0.649	1.54	0.899	0.732	0.556	1.142	1.318
0.68	0.894	0.981	1.46	1.05	0.674	1.56	0.894	0.722	0.544	1.153	1.325
0.70	0.908	0.993	1.423	1.043	0.698	1.58	0.889	0.712	0.534	1.164	1.333
0.72	0.922	1.003	1.391	1.038	0.721	1.60	0.884	0.702	0.524	1.176	1.340
0.74	0.934	1.011	1.358	1.032	0.744	1.62	0.879	0.692	0.513	1.188	1.348
0.76	0.945	1.017	1.327	1.028	0.766	1.64	0.874	0.682	0.504	1.200	1.355
0.78	0.955	1.022	1.296	1.023	0.788	1.66	0.869	0.672	0.494	1.213	1.361
0.80	0.964	1.025	1.266	1.019	0.810	1.68	0.864	0.663	0.485	1.226	1.368
0.82	0.972	1.028	1.236	1.016	0.831	1.70	0.860	0.654	0.476	1.240	1.374
0.84	0.978	1.028	1.207	1.012	0.852	1.72	0.855	0.644	0.467	1.254	1.381

B-12 ANALYSIS OF IMPORTANT EXTERNAL FLOW
table b. 8 Continued

M	$\frac{T_{0}}{T_{0}^{*}}$	$\frac{T}{T^{*}}$	$\frac{p}{p^{*}}$	$\frac{p_{0}}{p_{0}^{*}}$	$\frac{V}{V^{*}}$	M	$\frac{T_{0}}{T_{0}^{*}}$	$\frac{T}{T^{*}}$	$\frac{p}{p^{*}}$	$\frac{p_{0}}{p_{0}^{*}}$	$\frac{V}{V^{*}}$
1.74	0.850	0.635	0.458	1.269	1.387	2.38	0.727	0.409	0.269	2.012	1.522
1.76	0.846	0.626	0.450	1.284	1.393	2.40	0.724	0.404	0.265	2.045	1.525
1.78	0.841	0.618	0.442	1.300	1.399	2.42	0.721	0.399	0.261	2.079	1.528
1.80	0.836	0.609	0.434	1.316	1.405	2.44	0.718	0.384	0.257	2.114	1.531
1.82	0.832	0.600	0.426	1.332	1.410	2.46	0.716	0.388	0.253	2.149	1.533
1.84	0.827	0.592	0.418	1.349	1.416	2.48	0.713	0.384	0.250	2.185	1.536
1.86	1.823	0.584	0.411	1.367	1.421	2.50	0.710	0.379	0.246	2.222	1.538
1.88	0.818	0.575	0.403	1.385	1.426	2.52	0.707	0.374	0.243	2.259	1.541
1.90	0.814	0.567	0.396	1.403	1.431	2.54	0.705	0.369	0.239	2.298	1.543
1.92	0.810	0.559	0.390	1.422	1.436	2.56	0.702	0.365	0.236	2.337	1.546
1.94	0.806	0.552	0.383	1.442	1.441	2.58	0.700	0.360	0.232	2.377	1.548
1.96	0.802	0.544	0.376	1.462	1.446	2.60	0.697	0.356	0.229	2.418	1.551
1.98	0.797	0.536	0.370	1.482	1.450	2.62	0.694	0.351	0.226	2.459	1.553
2.00	0.793	0.529	0.364	1.503	1.454	2.64	0.692	0.347	0.223	2.502	1.555
2.02	0.789	0.522	0.357	1.525	1.459	2.66	0.690	0.343	0.220	2.545	1.557
2.04	0.785	0.514	0.352	1.547	1.463	2.68	0.687	0.338	0.217	2.589	1.559
2.06	0.782	0.507	0.346	1.569	1.467	2.70	0.685	0.334	0.214	2.634	1.561
2.08	0.778	0.500	0.340	1.592	1.471	2.72	0.683	0.330	0.211	2.680	1.563
2.10	0.774	0.494	0.334	1.616	1.475	2.74	0.680	0.326	0.208	2.727	1.565
2.12	0.770	0.487	0.329	1.640	1.479	2.76	0.678	0.32	0.206	2.775	1.567
2.14	0.767	0.480	0.324	1.665	1.483	2.78	0.676	0.319	0.203	2.824	1.569
2.16	0.763	0.474	0.319	1.691	1.487	2.80	0.674	0.315	0.200	2.873	1.571
2.18	0.760	0.467	0.314	1.717	1.490	2.82	0.672	0.311	0.198	2.924	1.573
2.20	0.756	0.461	0.309	1.743	1.494	2.84	0.67	0.307	0.195	2.975	1.575
2.22	0.753	0.455	0.304	1.771	1.497	2.86	0.668	0.304	0.193	3.028	1.577
2.24	0.749	0.449	0.299	1.799	1.501	2.88	0.665	0.300	0.190	3.081	1.578
2.26	0.746	0.443	0.294	1.827	1.504	2.90	0.664	297	0.188	3.136	1.580
2.28	0.743	0.437	0.290	1.856	1.507	2.92	0.662	0.293	0.186	3.191	1.582
2.30	0.740	0.431	0.286	1.886	1.510	2.94	0.660	0.290	0.183	3.248	1.583
2.32	0.736	0.426	0.281	1.916	1.513	2.96	0.658	0.287	0.181	3.306	1.585
2.34	0.733	0.420	0.277	1.948	1.516	2.98	0.656	0.283	0.179	3.365	1.587
2.36	0.730	0.414	0.273	1.979	1.520	3.00	0.654	0.280	0.176	3.424	. 588

