

PROGRAM : B.ENG TECH

ENGINEERING: CIVIL

SUBJECT : **STRUCTURAL STEEL AND**

TIMBER DESIGN III

CODE : SSDCIA3

<u>DATE</u> : WINTER SUPPLEMENTARY EXAMINATION

? JULY 2019

DURATION : (SESSION 1) 8:30 – 12:30

<u>WEIGHT</u> : 40 : 60

TOTAL MARKS : 103

EXAMINER : MR C BRUWER

MODERATOR : MR G ROBBERTS

NUMBER OF PAGES : 4 PAGES

INSTRUCTIONS : THIS IS A PARTIAL OPEN BOOK TEST, THE

FOLLOWING IS ALLOWED:

SANS 10162SANS 10160STEEL TABLES

• 2 PAGES WITH STUDENT NOTES

REQUIREMENTS : PROGRAMABLE POCKET CALCULATORS ALLOWED.

QUESTION 1

Figure A below shows a beam A-E (406x178x67 I section Grade 350W) simply supported at A and E with a lateral support the compression flange at D. Beam A-E is carrying two beams at B and C, attached to the bottom flange, which impose the following loads:

- Nominal fixed point load at B (cable hanger) : Permanent (Dead) = 55 kN Imposed (Live) = 45 kN
- Nominal fixed point load at C (cable hanger): Permanent (Dead)= 85 kN Imposed (Live) = 65 kN
- The beam at D has no load
- Include the beam's own weight

Determine if the beam (both segments) is adequate to support the applied loads by checking the following:

• 1.1 Determine the ultimate loads	(3)	
• 1.2 Draw the ultimate shear force and bending moment diagrams	(6)	
• 1.3 Determine the class of the beam		
• 1.4 Bending for segment A-D		
 1.4.1 Determine the moment of resistance 	(9)	
 1.4.2 Compare the ultimate moment to the moment of resistance 	(1)	
• 1.5 Bending for segment D-E		
 1.5.1 Determine the moment of resistance 	(5)	
 1.5.2 Compare the ultimate moment to the moment of resistance 	(1)	
• 1.6 Shear		
 1.6.1 Determine shear resistance 	(6)	
 1.6.2.Compare the ultimate shear resistance to shear resistance 	(1)	
	[38]	

QUESTION 2

Figure A below show a truss with pin-jointed members subjected to the following point loads:

- Nominal point load at F: Permanent (Dead) = 40 kN Imposed (Live) = 35 kN
- Nominal point load at G: Permanent (Dead) = 50 kN Imposed (Live) = 55 kN
- Neglect the own weight of the structure.

Answer the following questions whilst determining if members BF and CF can resist the ultimate forces.

1005	•		
•	2.1 De	etermine the ultimate forces in elements BF and CF	(8)
•	• 2.2 Check if the compression member (bolted on the one end and welded on the other).		
	adequate to resist the generated force by investigating the following:		
	0	1.2.1 Slenderness limits	(6)
	0	1.2.2 Local buckling	(2)
	0	1.2.3 Member buckling due to torsional-flexural buckling	(8)
	0	1.2.4 Member buckling due to flexural buckling	(2)
	0	1.2.5 Compare the minimum compression resistance force to the ultimate	
		compression force and comment.	(1)
•	2.3 Cl	neck if the tension member (bolted on the one end and welded on the other)	
is adequate to resist the generated force by investigating the following:			
	0	2.3.1 Slenderness limit	(2)
	0	2.3.2 Yielding failure	(1)
	В	olted side of the element	
	0	2.3.3 Bolt hole layout is given below, check if it meets the minimum	
		requirements	(6)
	0	2.3.4 Bolt shear, also check for reduction of long lap splices	(5)
	0	2.3.5 Bearing resistance of the member	(3)
	0	2.3.6 Fracture failure	(3)
	0	2.3.7 Tension fracture and shear fracture	(4)
	0	2.3.8 Tension fracture and shear yielding	(4)
		elded side of the element	
		2.3.9 Weld shear failure	(3)
		2.3.10 Fracture failure	(5)
	Co	ompare minimum tensile resistance against ultimate tensile force.	
	0	2.3.11 Determine and name the minimum tensile resistance force and	
		compare it to the ultimate tensile force and comment.	(2)
e th	a follor	wing information:	

- Use the following information:
 - All members are 100x100x15 Equal Angle, sawn to length, grade 350W steel. r_o =53.0mm, $C_w = 0.14x10^9 mm^6$ and Ω =0.63
 - All bolts are 20mm fully threaded Class 8.8 bolts. One line of 5 bolts. End distance is 30mm, pitch is 55mm and edge distance is 30mm.
 - All holes are drilled.
 - Transverse weld (8mm E70XX) on the end and a 105mm long parallel welds on both sides.
 - Connection plates are 350W steel and 16mm thick

