

<u>PROGRAM</u>	: BACCALAUREUS INGENERIAE CIVIL ENGINEERING	
<u>SUBJECT</u>	: URBAN HYDRAULICS 4A	
<u>CODE</u>	: SDI 4A11 / SDICIA4	
<u>DATE</u>	: MAIN EXAMINATION MAY/JUNE 2019	
DURATION	: 3 HOURS	
<u>WEIGHT</u>	: 50:50	
TOTAL MARKS	: 100	
ASSESSOR	: DR S. NYENDE-BYAKIKA	
<u>MODERATOR</u> NUMBER OF PAGES	: PROF. JM NDAMBUKI : 4 PAGES	
	. +17013	
INSTRUCTIONS REQUIREMENTS	ANSWER ALL QUESTIONS POCKET CALCULATOR	

Question One (ELO 2)

Pipeline AD is connected to a transmission main with a guaranteed pressure of at least 45 mwc. The data in Table 1 is valid.

Та	b	le	1
١d	U	ie	т

Section		AB	BC	CD
Ground level (masl)	Node A =	Node B =	Node C = 9	Node D = 2
	0	0		
Total number of dwellings along		140	210	250
section				
Section length (km)		5	8	12

Per capita water demand = 100 l/d

Average occupancy per dwelling = 4 persons

Fire fighting demand = $20 \text{ m}^3/\text{hr}$ (to be added to each section)

Assume no head losses

- a. What is the most favourable location for the fire fighting demand?
- b. Calculate the design flow rates in the various distribution sections
- c. Calculate the maximum pressure loss over distance AD
- d. Calculate the maximum pressure gradient over distance AD
- e. Determine the pressures of water in the pipe at points B, C and D
- f. Plot the pressure line from points A to D relative to the ground.

Question Two	(ELO 3)	(25 marks)

A sewer is to be designed to convey a design flow rate of 2160 m³/day. The slope of the sewer is limited to 1: 130. Considering Manning's n = 0.013:

- a. Determine the diameter of a suitable sewer pipe to be installed, rounded up to the nearest 50 mm. No adequacy checks are required.
 (8 marks)
- b. The same pipe designed in (a) above is to be laid in a 1854 ha area whose population density is 6 persons/ha, with a maximum per capita waste water production of 116.5
 l/day. Neglect infiltration. You are required to:
 - i. Determine the expected actual velocity in the sewer pipe (10 marks)
 - ii. Does this velocity fall within an acceptable range? (3 marks)
 - iii. Indicate why a velocity outside the range may be problematic. (4 marks)

(35 marks)

Question Three

A storm drain system is laid out as presented in Fig. 1 with the characteristics given in Table 2. You are required to compute the design flow and the required pipe diameter for each reach of the system for a 10 year storm. Take Manning's n as 0.013. 1 ha = 10 000 m².

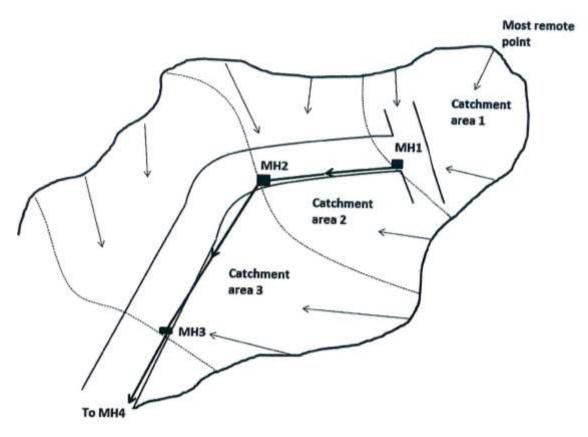
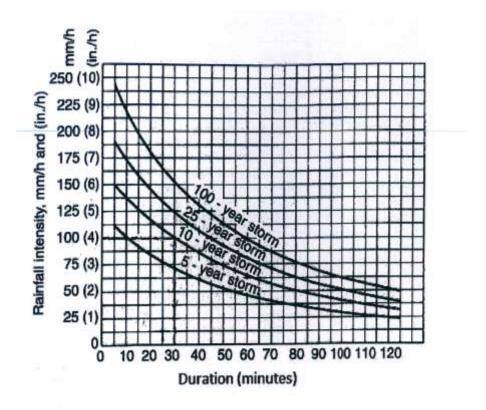
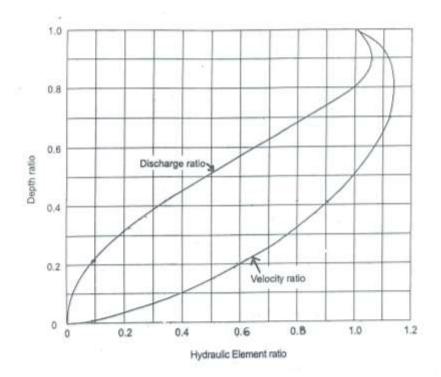


Table 2

Catchment area	Area (ha)	Runoff coefficient - C	Inlet time (min)
1	$A_1 = 1.5$	$C_1 = 0.50$	6
2	$A_2 = 2.5$	$C_2 = 0.40$	10
3	$A_3 = 3.2$	$C_3 = 0.30$	8
	Read	h characteristics	
Reach	1	2	3
Length (m)	120	150	
Slope (%)	0.4	0.3	0.3

Question Four


Write short notes on


- a. Biochemical Oxygen Demand
- b. Eutrophication
- c. Crown corrosion
- d. Energy generation from waste water treatment

(15 marks)

(4 marks) (4 marks) (4 marks)

(3 marks)

