

PROGRAM	B.ENG TECH: CIVIL ENGINEERING	
<u>SUBJECT</u>	REINFORCED CONCRETE DESIGN III	[
<u>CODE</u>	RCDCIA3	
DATE	WINTER EXAMINATION 13 MAY 2019	
DURATION	(SESSION 1) 08:00 – 12:00	
<u>WEIGHT</u>	40 : 60	
<u>TOTAL MARKS</u>	103	
EXAMINER	MR C. BRUWER	
MODERATOR	MR. G. ROBERTS	
NUMBER OF PAGES	4 PAGES	
INSTRUCTIONS	THIS IS A DADTI V ODEN DOOV EVAMINATION THE	

INSTRUCTIONS	: THIS IS A PARTLY OPEN BOOK EXAMINATION, THE
	FOLLOWINTG IS ALLOWED:
	2 PAGES OF STUDENT'S OWN NOTES
	SANS 0100 CODE
	COLUMN DESIGN GRAPHS
	NO TABLES OR COPIES FROM ANY TEXTBOOK
	ALLOWED
	: PLEASE ANSWER ALL THE QUESTIONS
	PLEASE NUMBER ALL THE QUESTIONS
REQUIREMENTS	: PROGRAMABLE POCKET CALCULATORS ALLOWED.

QUESTION 1

Design	the concrete beam indicated in the sketch below by:	
1.1	Determine the ultimate loading	(2)
1.2	Calculate the max moments, max shear force and max torsional force	(5)
Calcul	ate the number and diameter of reinforcement bars required for:	
1.3	Negative bending moment	(11)
1.4	Positive bending moment	(10)
1.5	Shear force	(6)
1.6	Torsional force	(2)
1.7	Combined shear and torsion	(9)
		(45)

Loads:

- W_n (UDL) A-C: Nominal permanent = $35kN/m^2$ Nominal imposed = $18kN/m^2$
- Take the own weight of the beam into consideration (own weight of the beam not included in the nominal permanent load of 35kN/m²)

General Information:

- The full cross-section of the beam will resist the generated bending moment (both positive and negative),
- The rectangular beam (400mm x 600mm) will resist the generated shear and torsional forces.
- Beam A-C is fixed to the columns at A and C, take the moments as:
 - $\circ M_A = M_C = -W_u L^2 / 12$ (W_u in kN/m)
 - $\circ \quad M_B = W_u L^2/24 \quad (W_u \text{ in } kN/m)$
- 25/19 Concrete with mild exposure conditions
- For initial calculations try: Y25 bars in tension (for both pos and neg BM) R12 stirrups

QUESTION 2

From the sketch below answer Questions 2A and 2B.

All beams are 220 x 450mm deep

All beams are 220 x 450mm deep

QUESTION 2 A

Design all the required reinforcement for Column "A" (400mm x 220mm) in a ten (10) storey building between the 4th and 5th floor of a building as indicated in the sketches of Question 2. (45)

Ultimate Axial load = 850kN

Ultimate moments about the x-axis:

- Top = 21kNm
- Bottom = -29kNm

Ultimate moments about the y-axis:

- Top = 25kNm
- Bottom = 9kNm

General information:

- 30/19 Concrete with mild exposure conditions
- For initial calculations try: Y20vertical bars

R8 stirrups

QUESTION 2 A

Determine only the moments (do not calculate reinforcement bar areas) for the solid slab, "Panel A" on a ten (10) storey building.

- Positive moments in both span direction/s
- Negative moment in both span direction/s
- Vertical shear

General information:

- All beams are 220mm wide x 400mm deep
- For initial calculations try Y12 bars
- Concrete =25/19 with mild exposure conditions
- All dimensions are from center line to center line
- Panel A would be used as a public assembly area with fixed individual seating 3.5kN/m².
- A screed 30mm thick, 2050kg/m³ unit weight, will be cast on the concrete floor
- Take own weight of the slab into account

Total [<u>103</u>]

(13)