

PROGRAM	: BACHELORS DEGREE IN URBAN AND REGIONAL PLANNING
<u>SUBJECT</u>	: REGIONAL ANALYSIS AND DEVELOPMENT PLANNING
CODE	RADTRA3
DATE	WINTER EXAMINATION 3 JUNE 2019
DURATION	: (X-PAPER) 08:30 - 11:30
<u>WEIGHT</u>	: 50:50
TOTAL MARKS	: 100
EXAMINERS	: PROF W MUSAKWA
MODERATOR	: DR T MUPHAMBUKELI
NUMBER OF PAGES	: 2 (TWO) PAGES.

INSTRUCTIONS TO CANDIDATES

- PLEASE ANSWER ANY FOUR QUESTIONS
- YOU MUST SHOW COMPETENCY IN THEORY & CONCEPT AWARENESS.
- READ THE PAPER AS A WHOLE BEFORE YOU START

REGIONAL ANALYSIS AND DEVELOPMENT PLANNING RADTRA3 WINTER EXAMINATION 3 JUNE 2018

SECTION A

- 1. Population and demographical analysis is crucial in formulating relevant plans? Discuss. (25)
- 2. Urban sprawl is often cited as an unsuitable form of development. Discuss the positive and negative impacts of urban sprawl on cities. (25)
- 3. Discuss the application of Alfred Webber's least cost theory, August Lösch's profit maximisation and Walter Christaller's central place theory in urban and regional planning. (25)
- 4. Define the following methods of regional analysis
 - a. Input-output model (5)
 - b. Shift share analysis (5)
 - c. Economic base model (5)
 - d. How useful are these models in the planning and management of cities in South Africa (10)
- Identify and explain the factors that have led to Silicon Valley (USA) and the Massachusetts Biotech cluster (USA) being successful industrial locations. (25)

$\underline{\mathbf{TOTAL} = 100}$