FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS
NATIONAL DIPLOMA IN ANALYTICAL CHEMISTRY
MODULE \quad PHYSICS PHY1TB1 /PHYXTB1 /PHY1YT1
CAMPUS DFC

DATE 07/01/2020
ASSESSOR

INTERNAL MODERATOR
DURATION 3 HOURS

SESSION: 08:00-11:00

MR. T.E NEMAKHAVHANI

MR. M LETSWALO
MARKS 120

NUMBER OF PAGES: 7 PAGES, INCLUDING 2 INFORMATION SHEETS

INSTRUCTIONS: CALCULATORS ARE PERMITTED (ONLY ONE PER STUDENT) REQUIREMENTS: ANSWER BOOK

ANSWER ALL QUESTIONS IN THE ANSWER BOOK PROVIDED

QUESTION 1

1.1. State pascal's principle.

1.2. State two quantities that the pressure in liquids is directly proportional to.
1.3. Name the instrument used to measure atmospheric pressure and the liquid used in the instrument.
1.4. Convert a pressure of 0.09 atm to a pressure in

> 1.4.1. KPa.
1.4.2. Pa.
(2)
1.4 .3 mmHg .

QUESTION 2

2.1. A cylinder is filled with water so that the force at its circular base is $\mathbf{F} \mathbf{N}$. If the pressure measures $\mathbf{P} \mathrm{kPa}$, show that the radius of the cylinder's base is given as

$$
\begin{equation*}
r=\sqrt{\frac{F}{\pi P}} \tag{6}
\end{equation*}
$$

2.2. A skateboarder lands on all four wheels after riding a railing. If the skateboarder has a mass of $9 \times 10^{5} \mathrm{mg}$ and the area on the bottom of a single wheel is $1 \times 10^{-4} \mathrm{~m}^{2}$, what pressure does the skateboard put on the ground?

QUESTION 3

3.1. Complete the free-body diagram given below to show that the relative density of a liquid using Hare's apparatus is given by $R D_{\ell}=\rho_{\ell} / \rho_{\mathrm{w}}$ and $R D_{\ell}=h_{w} / h_{\ell}$.

3.2. With the aid of a free-body diagram show that a gas pressure due to manometer apparatus is given as $\mathrm{P}_{\text {gas }}=\mathrm{P}_{\mathrm{atm}}+\mathrm{P}_{\ell}$.
3.3. In an experiment, the following readings were obtained: Weight of the solid in air $=4 \mathrm{~N}$. Weight of solid in water $=3.7 \mathrm{~N}$. Weight of solid in liquid $=3.8 \mathrm{~N}$. Calculate the RD of the liquid.

QUESTION 4

4.1. Define the coefficient of linear expansion.
4.2. A copper rod is 2.5 mm long at $5^{\circ} \mathrm{C}$. Calculate its length when heated to $15^{\circ} \mathrm{C}$.
4.3. A rectangular copper sheet has length 10 cm and width 8 mm at $40^{\circ} \mathrm{C}$. Calculate the area at $120^{\circ} \mathrm{C}$.
4.4. Calculate the temperature change required, to increase the area of brass plate by 3%.

QUESTION 5

5.1. Define the coefficient of cubic expansion.
5.2. A steel cube has a volume of $10 \mathrm{~cm} \times 10 \mathrm{~cm} \times 10 \mathrm{~cm}$ at $10^{\circ} \mathrm{C}$. Calculate the volume of the cube at $120^{\circ} \mathrm{C}$.
5.3. With the aid of free body diagram use the following constrains to explain how the apparent expansion of liquids depends on the container:
5.3.1. $\beta_{\ell}>3 \alpha_{\text {container }}$.
5.3.2. $\beta_{\ell}=3 \alpha_{\text {container }}$.
5.3.3. $\beta_{\ell}<3 \alpha_{\text {container }}$.

QUESTION 6

6.1. Name and explain three factors on which the amount of heat gained or lost depends on.

6.2. Define

6.2.1. Heat Capacity.
6.2.2. Specific Heat Capacity.
6.2.3. Latent Heat.
6.3. $\quad 2 \mathrm{mg}$ of water is heated from $20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Calculate the heat gained by the water.

QUESTION 7

7.1. State ohm's law.
7.2. Determine the resistance of a conductor for which a potential difference of 400 V across its ends, causes a current of 100 A to pass through it.
7.3. Calculate the resistance of 1000 m of copper wire with cross-sectional area $1 \mathrm{~mm}^{2}$. The resistivity of copper is $1.72 \times 10^{-8} \Omega \mathrm{~m}$.
7.4. From the circuit below if the potential difference across the 6Ω resistor is 3 V , calculate the resistance X

University of Johannesburg

PHYSICS INFORMATION SHEET

11. $A=r_{1}+r_{2}$
12. $\sin i_{1}=n \sin r_{1}$
13. $\sin i_{2}=n \sin r_{2}$
14. $D=\left(i_{1}+i_{2}\right)-A$
15. $n=\frac{\sin \left(\frac{A+D}{2}\right)}{\sin \frac{A}{2}}$
16. $P=\frac{1}{f}$
17. $n \lambda=d \sin \theta$
18. $n=\frac{\text { real depth }}{\text { apparent depth }}$
19. $\quad \sin c=\frac{n_{1}}{n_{2}}$
20. $n_{1} \sin i_{1}=n_{2} \sin i_{2}$
21. ${ }_{1} n_{2}=\frac{n_{2}}{n_{1}}$
22. $f=\frac{R}{2}$
23. $m=\frac{v}{u}$
24. $m=\frac{v}{f}-1$
25. $\frac{1}{f}=\frac{1}{u}+\frac{1}{v}$
26. ${ }_{1} n_{2}=\frac{\sin i_{1}}{\sin i_{2}}$
27. $n=\frac{c}{v}$
28. $d=t\left(1-\frac{1}{n}\right)$

Mechanics

1. $v=u+a t$
2. $v^{2}=u^{2}+2 a s$
3. $s=u t+\frac{1}{2} a t^{2}$
4. $s=v t-\frac{1}{2} a t^{2}$
5. $s=\left(\frac{u+v}{2}\right) t$
6. $F=m a$
7. $\quad F_{f}=\mu N$
8. $W=m g$
9. $E_{p}=m g h$
10. $E_{k}=\frac{1}{2} m v^{2}$

Fluids

1. $P=\rho g h$
2. $W=\rho g V$
$R D=\frac{\rho_{\text {substance }}}{\rho_{\text {water }}}=\frac{m_{\text {substance }}}{m_{\text {water }}}$
3. $\quad P_{1} V_{1}=P_{2} V_{2}$
4. $W_{\text {loss }}=\rho_{t} g V_{b}$
5. $\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}$
6. $R D s=\frac{\text { W in air }}{\text { Win air-W in water }}$
$7 R D_{\imath}=\frac{\text { Win air-W in liquid }}{\text { Win in it-W in water }}$
7. $W=\rho g V$

Heat

1. $\alpha=\frac{\Delta l}{l_{1} \Delta t}$
2. $V_{2}=V_{1}[1+3 \alpha \Delta t]$
3. $\beta=2 \alpha$
4. $\gamma=3 \alpha$
5. $\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}$
6. $\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$
7. $Q=m c \Delta t$
8. $T=t+273$
9. $Q=m \ell$

Electricity

1. $\quad V=I R$
2. $R=\frac{\rho \ell}{A}$
3. $R_{t}=R_{o}(1+\alpha \Delta t)$
4. $e m f=I(R+r)$
5. $W=V I t$
6. $P=V I$
7. $P=\frac{W}{t}$
8. $F=K \frac{\left|q_{1}\right|\left|q_{2}\right|}{r^{2}}$
9. $E=K \frac{|q|}{r^{2}}$
10. $c=3 \times 10^{8} \mathrm{~ms}^{-1}$
11. $e^{-}=1,6 \times 10^{-19} \mathrm{C}$
12. $\mathrm{k}=8.99 \times 10^{9} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}^{2}$

Linear expansivities

 (in ${ }^{\circ} \mathrm{C}^{-1}$ or K^{-1})Aluminium $=2,2 \times 10^{-5}$
Brass $\quad=1,9 \times 10^{-5}$
Brick $=9,5 \times 10^{-6}$
Concrete $=1,2 \times 10^{-5}$
Copper $\quad=1,7 \times 10^{-5}$
Glass $\quad=8,5 \times 10^{-6}$
Iron $\quad=1,2 \times 10^{-5}$
Pine $\quad=3,4 \times 10^{-7}$
Pyrex glass $=3,9 \times 10^{-4}$
Steel $\quad=1,1 \times 10^{-5}$

Sound

1. $v=f \lambda$

Constants

1. $g=9,8 \mathrm{~ms}^{-2}$

Specific heat capacities

(in $\mathrm{Jkg}^{-1}{ }^{\mathrm{o}} \mathrm{C}^{-1}$)

		Alcohol$=0,8$	
Aluminium	$=910$	Copper	$=9$
Copper	$=380$	Glycerine	$=1,26$
Glass	$=700$	Gold	$=19,3$
Glycerine	$=2500$		Lead

6. Specific latent heat (in Jkg^{-1})

Ice $\quad=3,35 \times 10^{5}$
Steam $=2,26 \times 10^{6}$

Relative densities
9. Standard Temperature $273 \mathrm{~K}=0^{\circ} \mathrm{C}$

