

# FACULTY OF SCIENCE

## DEPARTMENT OF PHYSICS

NATIONAL DIPLOMA IN ANALYTICAL CHEMISTRY

MODULE PHYSICS PHY1TB1 /PHYXTB1 /PHY1YT1

CAMPUS DFC

JANUARY SUPPLEMENTARY EXAMINATION

DATE 07/01/2020 ASSESSOR

INTERNAL MODERATOR

DURATION 3 HOURS

SESSION: 08:00 - 11:00

MR. T.E NEMAKHAVHANI

MR. M LETSWALO

MARKS 120

NUMBER OF PAGES: 7 PAGES, INCLUDING 2 INFORMATION SHEETS

INSTRUCTIONS: CALCULATORS ARE PERMITTED (ONLY ONE PER STUDENT) REQUIREMENTS: ANSWER BOOK

### ANSWER ALL QUESTIONS IN THE ANSWER BOOK PROVIDED

### **QUESTION 1**

|      |                                                                                                 | (15) |
|------|-------------------------------------------------------------------------------------------------|------|
|      | 1.4.3. mmHg.                                                                                    | (2)  |
|      | 1.4.2. Pa.                                                                                      | (2)  |
|      | 1.4.1. KPa.                                                                                     | (2)  |
| 1.4. | Convert a pressure of 0.09 atm to a pressure in                                                 |      |
| 1.3. | Name the instrument used to measure atmospheric pressure and the liquid used in the instrument. | (3)  |
| 1.2. | State two quantities that the pressure in liquids is directly proportional to.                  | (2)  |
| 1.1. | State pascal's principle.                                                                       | (4)  |

#### **QUESTION 2**

2.1. A cylinder is filled with water so that the force at its circular base is **F** N. If the pressure measures **P** kPa, show that the radius of the cylinder's base is given as

$$r = \sqrt{\frac{F}{\pi P}} \tag{6}$$

2.2. A skateboarder lands on all four wheels after riding a railing. If the skateboarder has a mass of 9 × 10<sup>5</sup> mg and the area on the bottom of a single wheel is 1 × 10<sup>-4</sup> m<sup>2</sup>, what pressure does the skateboard put on the ground?

(12)

## **QUESTION 3**

3.1. Complete the free-body diagram given below to show that the relative density of a liquid using Hare's apparatus is given by  $RD_{\ell} = \rho_{\ell} / \rho_{w}$  and  $RD_{\ell} = h_{w} / h_{\ell}$ . (10)



| 3.2. | With the aid of a free-body diagram show that a gas pressure due to |  |  |          |  |  |     |  |  |
|------|---------------------------------------------------------------------|--|--|----------|--|--|-----|--|--|
|      | manometer apparatus is given as $P_{gas} = P_{atm} + P_{\ell}$ .    |  |  |          |  |  | (5) |  |  |
| ~ ~  |                                                                     |  |  | <i>.</i> |  |  |     |  |  |

3.3. In an experiment, the following readings were obtained: Weight of the solid in air = 4 N. Weight of solid in water = 3.7 N. Weight of solid in liquid = 3.8 N. Calculate the RD of the liquid. (4)

(19)

# **QUESTION 4**

|      |                                                                                                       | (17) |
|------|-------------------------------------------------------------------------------------------------------|------|
| 4.4. | Calculate the temperature change required, to increase the area of brass plate by 3%.                 | (5)  |
| 4.3. | A rectangular copper sheet has length 10 cm and width 8 mm at 40 °C.<br>Calculate the area at 120 °C. | (4)  |
| 4.2. | A copper rod is 2.5 mm long at 5 °C. Calculate its length when heated to 15 °C.                       | (4)  |
| 4.1. | Define the coefficient of linear expansion.                                                           | (4)  |

# **QUESTION 5**

|      |                                                                                                                                           | (15) |
|------|-------------------------------------------------------------------------------------------------------------------------------------------|------|
|      | 5.3.3. $\beta_{\ell} < 3\alpha_{container}$ .                                                                                             | (2)  |
|      | 5.3.2. $\beta_{\ell} = 3\alpha_{\text{container}}$ .                                                                                      | (2)  |
|      | 5.3.1. $\beta_{\ell} > 3\alpha_{\text{container}}$ .                                                                                      | (2)  |
| 5.3. | With the aid of free body diagram use the following constrains to explain how the apparent expansion of liquids depends on the container: |      |
| 5.2. | A steel cube has a volume of 10 cm $\times$ 10 cm $\times$ 10 cm at 10 °C. Calculate the volume of the cube at 120 °C.                    | (5)  |
| 5.1. | Define the coefficient of cubic expansion.                                                                                                | (4)  |

# **QUESTION 6**

| 6.1. | Name and explain three factors on which the amount of heat gained or lost depends on. | (6)                |
|------|---------------------------------------------------------------------------------------|--------------------|
| 6.2. | Define                                                                                |                    |
|      | 6.2.1. Heat Capacity.                                                                 | (3)                |
|      | 6.2.2. Specific Heat Capacity.                                                        | (3)                |
|      | 6.2.3. Latent Heat.                                                                   | (3)                |
| 6.3. | 2 mg of water is heated from 20 °C to 70 °C. Calculate the heat gained by the water.  | (5)<br><b>(20)</b> |

## **QUESTION 7**

- 7.1. State ohm's law.
- 7.2. Determine the resistance of a conductor for which a potential difference of 400 V across its ends, causes a current of 100 A to pass through it. (4)
- 7.3. Calculate the resistance of 1000 m of copper wire with cross-sectional area 1 mm<sup>2</sup>. The resistivity of copper is  $1.72 \times 10^{-8} \Omega$  m. (6)
- 7.4. From the circuit below if the potential difference across the 6  $\Omega$  resistor is 3 V, calculate the resistance X (8)



(22)

Total Marks [120]

(4)



# University of Johannesburg

6.  $RDs = \frac{W \text{ in air}}{W \text{ in air-W in water}}$ **OPTICS** 11.  $A = r_1 + r_2$ 4.  $s = vt - \frac{1}{2}at^2$ 1.  $f = \frac{R}{2}$ 5.  $s = \left(\frac{u+v}{2}\right)t$  $RD\iota = rac{W \text{ in air} - W \text{ in liquid}}{W \text{ in air} - W \text{ in water}}$ 12.  $\sin i_1 = n \sin r_1$ 8.  $W = \rho g V$ 6. F = ma2.  $m = \frac{v}{c}$ 13.  $\sin i_2 = n \sin r_2$ 7.  $F_f = \mu N$ НЕАТ 3.  $m = \frac{v}{f} - 1$ 14.  $D = (i_1 + i_2) - A$ 1.  $\alpha = \frac{\Delta l}{l_1 \Delta t}$ 15.  $n = \frac{\sin\left(\frac{A+D}{2}\right)}{\sin\frac{A}{2}}$ 8. W = mg $4. \qquad \frac{1}{f} = \frac{1}{u} + \frac{1}{v}$ 2.  $V_2 = V_1 [1 + 3\alpha \Delta t]$ 9.  $E_p = mgh$ 3.  $\beta = 2\alpha$  $5. \quad {}_1n_2 = \frac{\sin i_1}{\sin i_2}$ 10.  $E_k = \frac{1}{2}mv^2$ 4.  $\gamma = 3\alpha$ 16.  $P = \frac{1}{f}$ **FLUIDS** 6.  $n = \frac{c}{v}$ 5.  $\frac{V_1}{T_1} = \frac{V_2}{T_2}$ 17.  $n\lambda = d\sin\theta$ 1.  $P = \rho g h$ 7.  $n = \frac{\text{real depth}}{\text{app arent depth}}$ 18.  $d = t \left( 1 - \frac{1}{n} \right)$ 2.  $W = \rho g V$ 6.  $\frac{P_1}{T_1} = \frac{P_2}{T_2}$  $RD = \frac{\rho_{substance}}{\rho_{substance}} = \frac{m_{substance}}{\rho_{substance}}$  $\sin c = \frac{n_1}{n_2}$ **MECHANICS** 8.  $ho_{\scriptscriptstyle water}$  $m_{water}$ 7.  $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$ 4.  $P_1V_1 = P_2V_2$ 1. v = u + at9.  $n_1 \sin i_1 = n_2 \sin i_2$ 2.  $v^2 = u^2 + 2as$ 5.  $W_{loss} = \rho_{l} g V_{h}$ 10.  $_{1}n_{2} = \frac{n_{2}}{n_{1}}$ 3.  $s = ut + \frac{1}{2}at^2$ 8.  $Q = mc\Delta t$ 

PHYSICS INFORMATION SHEET

9. 
$$T = t + 273$$
2.  $c = 3 \times 10^8 ms^{-1}$ 10.  $Q = m\ell$   
ELECTRICITY3.  $e^- = 1,6 \times 10^{-19}C$   
4.  $k = 8.99 \times 10^9 N.m^2/C^2$ SPECIFIC HEAT CAPACITIES  
(in Jkg<sup>-1</sup> °C<sup>-1</sup>)1.  $V = IR$   
( $n C^{-1} or K^{-1}$ )LINEAR EXPANSIVITIES  
( $in °C^{-1} or K^{-1}$ )Aluminium = 910  
Copper = 380  
Glass = 7002.  $R = \frac{\rho\ell}{A}$   
3.  $R_i = R_o(1 + \alpha\Delta t)$ Brass = 1,9 x 10^5  
Brick = 9,5 x 10^6Aluminum = 910  
Copper = 2500  
Ice = 22004. enf =  $I(R + r)$ Brick = 9,5 x 10^6  
Glass = 8,5 x 10^6Ice = 2100  
Pyrex glass = 837  
Rubber = 17005.  $W = VIt$   
Copper = 1,7 x 10^5Question = 1,2 x 10^5  
Steam = 1,800  
Steel = 4,60  
Steel = 1,1 x 10^5Steel = 4,60  
Stone = 900  
Water = 4,200  
Wood = 1,7006.  $P = K \frac{|q|}{r^2}$   
Pyrex glass = 3,9 x 10^4  
Steel = 1,1 x 10^5Stone = 900  
Water = 4,200  
Wood = 1,7008.  $F = K \frac{|q|}{r^2}$   
Pyrex glass = 3,9 x 10^4  
Steel = 1,1 x 10^5Stone = 900  
Water = 4,200  
Wood = 1,7009.  $E = f\lambda$ Glass = 1,1 x 10^5Stone = 1,700  
Steel = 1,1 x 10^59.  $V = f\lambda$ Store = 1,1 x 10^5Store = 1,700  
Water = 4,200  
Wood = 1,700

CONSTANTS

1.  $g = 9.8 \, ms^{-2}$ 

**RELATIVE DENSITIES** Alcohol = 0,8 = 9 Copper Glycerine = 1,26= 19,3 Gold Lead = 11,3 Mercury = 13,6Plastic = 1,43 Tin = 7,3 Water = 1 8. STANDARD PRESSURE

 $= 3,35 \times 10^5$ 

 $= 2,26 \times 10^6$ 

Ice

Steam

101,3 kPa = 76 cmHg

9. Standard Temperature 273 K = 0 °C