

FIRST NAMES: \qquad
SURNAME: \qquad
STUDENT NUMBER: \qquad

FACULTY OF SCIENCE

DATE 07/01/2020
ASSESSOR

INTERNAL MODERATOR
DURATION 3 HOURS

SESSION: 08:00-11:00
DR. J. CHANGUNDEGA
PROF. L. REDDY
MARKS 108

NUMBER OF PAGES: 21 PAGES, INCLUDING BLANK SPACE AND INFORMATION SPACE INSTRUCTIONS:

CALCULATORS ARE PERMITTED (ONLY ONE PER STUDENT)

ANSWER ALL QUESTIONS IN THE SPACES PROVIDED IN THIS QUESTION PAPER

QUESTION 1: PHYSICS AND MEASUREMENT

1.1. Five clocks (A to E) are being tested in a laboratory. For one week, exactly at 12 Noon, as determined by South African Standard Time (SAST), the clocks read shown in the following table.

Clock	Sun.	Mon.	Tues.	Wed.	Thurs.	Fri.	Sat.
A	$12: 36$	$12: 36$	$12: 37$	$12: 37$	$12: 37$	$12: 37$	$12: 38$
B	$11: 59$	$12: 00$	$11: 59$	$12: 00$	$12: 00$	$11: 59$	$12: 00$
C	$15: 50$	$15: 51$	$15: 52$	$15: 53$	$15: 54$	$15: 55$	$15: 56$
D	$12: 03$	$12: 02$	$12: 01$	$12: 00$	$11: 59$	$11: 58$	$11: 57$
E	$12: 03$	$12: 02$	$12: 01$	$12: 01$	$12: 01$	$12: 01$	$12: 01$

1.1.1. Define precision.
1.1.2. Which clock is most accurate?
1.1.3. Which clock is most precise?
1.2. According to Stokes' formula, the viscous force is given by
$F_{r}=6 \pi r \eta v$
Where r is a radius, η is the coefficient of viscosity of the fluid and v is velocity.
1.2.1. Use the above equation to determine the dimensions of viscosity η.
1.3. A multivitamin tablet can contain 3.0 mg of vitamin B_{2} (riboflavin) and the recommended daily allowance is $0.003 \mathrm{~g} /$ day.
How many such tablets should a person take each day to get the proper amount of this vitamin, assuming that this is his only source of the vitamin?

QUESTION 2: KINEMATICS, VECTORS AND DYNAMICS

2.1. The graph shows the velocity of a train as a function of time.

2.1.1. At what time was its velocity greatest?
2.1.2. During what time interval, was the velocity constant?
2.2. A fire hose held near the ground as illustrated in the diagram, shoots water at a speed of $6.5 \mathrm{~m} / \mathrm{s}$.

2.3. Two crates, of mass 65 kg and 125 kg are in contact and at rest on a horizontal surface as shown in the diagram. A 650 N force is exerted on the 65 kg crate.

If the coefficient of kinetic friction is 0.18 , calculate the acceleration of the system.

QUESTION 3: ENERGY, LINEAR MOMENTUM AND COLLISIONS

3.1. A particle is acted upon by a conservative force. The graph shows the variation of the potential energy of a particle with position along the x axis.

3.1.1. Using the labelled positions along the x axis, identify a position of stable equilibrium.
3.1.2. Using the labelled positions along the x axis, identify a position of unstable equilibrium.
3.1.3. At what position is the kinetic energy a minimum?
3.2. At an intersection, car A with mass 950 kg traveling East on collides with car B with mass 1900 kg that is traveling North as illustrated in the diagram.

The two vehicles stick together as a result of the collision, and the wreckage slides at $16.0 \mathrm{~m} / \mathrm{s}$ in the direction 24^{0} East of North. Calculate the speed of each car before the collision. The collision occurs during a heavy rainstorm therefore you can ignore friction forces between the vehicles and the wet road.
3.3. The linear momentum of a particle is given by
$\vec{p}=\left[4.8 t^{2} \hat{\imath}-8.0 \hat{\jmath}-8.9 t \hat{k}\right] \mathrm{kg} \mathrm{m} \mathrm{s}^{-1}$
What is the net force acting on the particle (in terms of time t)?

QUESTION 4: ROTATIONAL DYNAMICS AND ELASTIC PROPERTIES OF SOLIDS

4.1. A helicopter has large main rotor blades that rotate above it in order to provide lift. There is also a set of rotating small tail blades. Explain the purpose of the tail blades?
4.2. A wheel of radius 0.350 m is pivoted about an axis through point O at its centre, as shown in the diagram. Calculate the net torque about this axis due to the three forces indicated. The 11.9 N force acts downwards while the 8.5 N force acts at a upwards and the 14.6 N force acts at an angle of 40° to the radius of the wheel as shown.

4.3. A sample of oil having an initial volume of $600 \mathrm{~cm}^{3}$ is subjected to a pressure increase of $3.60 \times 10^{6} \mathrm{~Pa}$ and the volume is found to decrease by $0.45 \mathrm{~cm}^{3}$. What is the bulk modulus of the material?

QUESTION 5: UNIVERSAL GRAVITATION

Constants

$G=6.674 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
$M_{\text {Eath }}=5.97 \times 10^{24} \mathrm{~kg}$
$R_{\text {Earth }}=6.37 \times 10^{6} \mathrm{~m}$
5.1. The Earth is closer to the sun in November than in May. In which of these two months does the Earth move faster in its orbit?

Justify your answer.
5.2. Deimos, a moon of Mars, is about 12 km in diameter with a mass of $2.0 \times 10^{15} \mathrm{~kg}$. Determine the magnitude of the mean acceleration of gravity on the surface of Deimos.
5.3. Assume that the Earth and its Moon are isolated and uninfluenced by the Sun. The mean distance of the Moon from the Earth is $3.84 \times 10^{8} \mathrm{~m}$.
What is the gravitational potential energy of a 1 kg object that is located midway between the Earth and Moon?

QUESTION 6: FLUID MECHANICS

6.1. A student found the block of metal shown in the diagram and she believes that it is a piece of gold. The distances are given so that you have an idea of the size of the block.

To test if this is truly pure gold, she weighed the metal in air ($W_{\text {in air }}$) and then she weighed it in water ($W_{\text {in water }}$).
Use equations to show how she would calculate the block's density without having to take any more measurements.
6.2. The 70.0 kg student in the diagram balances a 1200 kg elephant on a hydraulic lift.

Both the large and small pistons have a circular cross-sectional area and the diameter of the large piston is 2.0 m as indicated in the diagram. What is the diameter of the piston that the student is standing on?
6.3. Coca-Cola (which is mostly water) flows in a pipe at a beverage plant with a flow rate that fills 220 cans per minute.
Each can holds 355 mL of soft drink.
At one point X along the pipe, the cross-sectional area of the pipe is $2.00 \mathrm{~cm}^{2}$.
Determine
6.3.1. the volume flow rate of the Coca-Cola in the pipe (in $\mathrm{m}^{3} / \mathrm{s}$).
(3)
6.3.2. the speed of the Coca-Cola at point X in the pipe.

QUESTION 7: OSCILLATIONS AND WAVES

7.1. You are captured by Martians (inhabitants of Mars), taken into their ship, and put to sleep. You awake some time later and find yourself locked in a small room with no windows. The only items that the Martians have left you with are your digital watch, your school ring, your ruler, your calculator and your long silver-chain necklace. Explain how you could use the simple pendulum to determine whether you are still on the Earth.
7.2. What is the intensity (in $\mathrm{W} \mathrm{m}^{-2}$) of a sound whose level is at the human threshold of pain $(120 \mathrm{~dB})$? The threshold of hearing is at an intensity of $1.0 \mathrm{pW} \mathrm{m}^{-2}$
7.3. A musician is tuning her instrument to one musical sound (note) called 'concert A' which has a frequency of 440 Hz . She plays the note on her instrument while listening to tuning device sounding a perfect 'concert A'. She hears beats of frequency 3 Hz . She then tightens her instrument's string slightly (for a higher frequency) and now hears beats at 4 Hz . What was the frequency of the sound she played when she heard the 3 Hz beats?

QUESTION 8: THERMODYNAMICS

8.1. We are very lucky that the Earth is not in thermal equilibrium with the Sun (which has a surface temperature of 5800 K) but why are the two bodies not in thermal equilibrium?
8.2. State the second law of thermodynamics.
8.3. Heat is added to a 500 g solid sample at the rate of $10.0 \mathrm{~kJ} / \mathrm{min}$ while recording its temperature as a function of time. The data is plotted in the graph below.

8.3.1. What is the latent heat of fusion for this solid?

8.3.2. What is the specific heat of the solid state of this material?

QUESTION 9: ELECTRICITY AND MAGNETISM

Constants
$k_{e}=8.99 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-2}$
9.1. What is a ferromagnetic material and explain briefly how it can be magnetised.

A diagram is not necessary.
9.2. The particles in the diagram are located along one line. The distances between the charges are shown.

$$
+75 \mu \mathrm{C} \quad+48 \mu \mathrm{C} \quad-85 \mu \mathrm{C}
$$

Calculate the net electric force on the $+75 \mu \mathrm{C}$ charge, assuming that the three charge system is isolated.
9.3. Determine the current reading of the ammeter in the diagram if the battery has an internal resistance of 3.26Ω.

INFORMATION SPACE

Plane Geometry, Areas and Volumes of Geometric Figures			
Shape	Perimeter	Area	Volume
Square	$P=4 s$	$A=s^{2}$	
Rectangle	$P=2 l+2 w$	$A=l w$	
Circle	$C=2 \pi r$	$A=\pi r^{2}$	
Sector of a circle		$A=\frac{1}{2} \theta r^{2}$	
Triangle		$A=\frac{1}{2} b h$	
Trapezoid		$A=\frac{1}{2}\left(b_{2}+b_{1}\right) h$	$V=b h$
Parallelogram	$P=2 a+2 b$	$A=6 s^{2}$	$V=l w h$
Cube		$A=2 \pi r h(w i t h o u t ~ t o p ~$ and bottom)	$V=\pi r^{2} h$
Rectangular solid		$A=4 \pi r^{2}$	$V=A h$
Circular cylinder		$A=\pi r l$	$V=\frac{4}{3} \pi r^{3}$
Non-circular cylindrical prisms		$V=\frac{1}{3} \pi r^{2} h$	
Sphere			
Right Circular Cone			

1D Motion Continued	2D Motion
$\begin{aligned} & v_{x f}=v_{x i}+a_{x} t \\ & v_{x a v g}=\frac{v_{x i}+v_{x f}}{2} \\ & \Delta x=v_{x i} t+\frac{1}{2} a_{x} t^{2} \end{aligned}$	Projectile Motion: $\begin{aligned} t_{\text {total }}=\frac{v_{i} \sin \theta_{i}}{g} & \\ & h=\frac{v_{i}^{2} \sin ^{2} \theta_{i}}{2 g} \\ & R=\frac{v_{i}^{2} \sin 2 \theta_{i}}{g} \end{aligned}$
$\Delta x=v_{x f} t-\frac{1}{2} a_{x} t^{2}$ $\Delta x=\left(\frac{v_{x i}+v_{x f}}{2}\right) t$	Uniform Circular Motion: $\begin{array}{ll} a_{\mathrm{c}}=\frac{v^{2}}{r} & \\ \omega=\frac{2 \pi}{T} & \\ a_{c}=r \omega^{2} & v=r \omega \\ & F_{r}=\frac{m v^{2}}{r} \end{array}$
$\Delta v=v_{f}-v_{i}=\int_{t_{i}}^{t_{f}} a d t$	Forces and Laws of Motion
$\Delta x=x_{f}-x_{i}=\int_{t_{i}}^{t_{f}} v d t$	$\sum \vec{F}=m \vec{a}$

ENERGY, ENEGRY CONSERVATION AND LINEAR MOMENTUM	
Energy	Energy Conservation
$W=\vec{F} \cdot \Delta \vec{r}=F \Delta r \cos \theta \quad W=\int F_{x} d x$	$\Delta K+\Delta U_{g}+\Delta U_{S}=0$ (isolated system, no friction)
$K=\frac{1}{2} m v^{2} \quad U_{g}=m g y \quad U_{S}=\frac{1}{2} k x^{2}$	$\Delta K+\Delta U_{g}+\Delta U_{S}+f_{k} d=0$ (isolated system with friction)
$F_{s}=-k x$	$\Delta K+\Delta U_{g}+\Delta U_{S}=W_{\sum F}$ (non-isolated system, no friction)
$F_{x}=-\frac{d U}{d x}$	$\Delta K+\Delta U_{g}+\Delta U_{S}+f_{k} d=W_{\sum F}$ (non-isolated system with friction)
$\begin{array}{ll} P=\frac{d E}{d t}=\frac{d W}{d t} \quad P_{\text {avg }}=\frac{E}{\Delta t}=\frac{W}{\Delta t} \\ P=\vec{F} \cdot \vec{v}=F v \cos \theta \end{array}$	
Linear Momentum	
$\vec{p}=m \vec{v} \quad \sum \vec{F}=\frac{d \vec{p}}{d t}$	$\Delta \vec{p}=\vec{I}=\vec{F} \Delta t$

UNIVERSAL GRAVITATION

$F_{g}=G \frac{m_{1} m_{2}}{r^{2}}$	$g=G \frac{M_{E}}{R_{E}{ }^{2}}$
$\left(\frac{F_{g}}{m}\right)=G \frac{M_{\text {Planet }}}{r^{2}}$	$T^{2}=\left[\frac{4 \pi^{2}}{G M_{\text {Sun }}}\right] a^{3}$
$U_{g}=-\frac{G M_{E} m}{r}$	

FLUID MECHANICS

Fluid Pressure and Archimedes' Principle

$P=\frac{F}{A} \quad P=P_{\text {atm }}+\rho g h \quad \frac{F_{1}}{A_{1}}=\frac{F_{2}}{A_{2}} \quad$ Fraction submerged $=\rho_{\text {body }} / \rho_{\text {fluid }}$

Fluids in Motion

Continuity Equation $A v=$ constant	Bernoulli's Equation $P+\frac{1}{2} \rho v^{2}+\rho g y=$ constant
Venturi meter $Q=A_{1} A_{2} \sqrt{\frac{2\left(P_{1}-P_{2}\right)}{\rho\left(A_{1}{ }^{2}-A_{2}{ }^{2}\right)}}=A_{1} A_{2} \sqrt{\frac{2 \rho_{\text {mano }} g h}{\rho\left(A_{1}{ }^{2}-A_{2}{ }^{2}\right)}}$	Torricelli's Theorem $v_{1}=\sqrt{2 g h}$
Viscocity $F=\eta \frac{A v}{d}$	Poiseuille's law $Q=\frac{V}{t}=\frac{\pi r^{4} \Delta P}{8 \eta L}$
Stokes' Formula $F_{f}=6 \pi \eta r v$	Reynolds number $R e=\frac{2 \rho v r}{\eta}$

OSCILLATIONS AND WAVES

Simple Harmonic Motion

Block-Spring Oscillator
$F=-k x \quad \frac{d^{2} x}{d t^{2}}=-\omega^{2} x \quad \omega=\sqrt{\frac{k}{m}}$
$f=\frac{1}{T} \quad T=\frac{2 \pi}{\omega}$
$x=A \cos (\omega t+\phi)$
$E=\frac{1}{2} k A^{2}$
$v= \pm \omega \sqrt{A^{2}-x^{2}}$

Simple Pendulum
$\frac{d^{2} \theta}{d t^{2}}=-\omega^{2} \theta \quad \omega=\sqrt{\frac{g}{L}}$
Physical Pendulum

$$
\begin{aligned}
& \frac{d^{2} \theta}{d t^{2}}=-\omega^{2} \theta \quad \omega=\sqrt{\frac{m g d}{I}} \\
& \text { Torsional Pendulum } \\
& \frac{d^{2} \theta}{d t^{2}}=-\omega^{2} \theta \quad \omega=\sqrt{\frac{\kappa}{I}}
\end{aligned}
$$

Waves

Travelling Sinusoidal Waves
$k=\frac{2 \pi}{\lambda} \quad \omega=\frac{2 \pi}{T}=2 \pi f \quad v=f \lambda \quad v=\frac{\omega}{k}$
$y(x, t)=A \sin (k x \mp \omega t+\phi)=A \sin \left[\frac{2 \pi}{\lambda}(x \mp v t)+\phi\right]$

Sound Waves

$$
\begin{aligned}
& \beta(\text { in } d B)=10 \log \frac{I}{I_{0}} \\
& f^{\prime}=\left[\frac{v \mp v_{0}}{v \pm v_{S}}\right] f \\
& f=\left(f_{1}+f_{2}\right) / 2 \quad f_{\text {Beat }}=f_{1}-f_{2}
\end{aligned}
$$

THERMODYNAMICS

Temperature

$T_{{ }^{\circ} \mathrm{C}}=T-273.15$

$$
\alpha=\frac{\Delta L}{L_{i} \Delta T} \quad \beta=\frac{\Delta A}{A_{i} \Delta T} \quad \beta=\frac{\Delta V}{V_{i} \Delta T}
$$

Ideal Gas Laws
$P_{i} V_{i}=P_{f} V_{f} \quad \frac{V_{i}}{T_{i}}=\frac{V_{f}}{T_{f}} \quad \frac{P_{i}}{T_{i}}=\frac{P_{f}}{T_{f}}$

BLANK SPACE

