

FIRST NAMES: \qquad
SURNAME: \qquad
STUDENT NUMBER: \qquad

FACULTY OF SCIENCE

DATE 14/11/2019
ASSESSOR

INTERNAL MODERATOR
DURATION 3 HOURS
\qquad

NOVEMBER EXAMINATION 2019

NUMBER OF PAGES: 20 PAGES, INCLUDING BLANK SPACE AND INFORMATION SPACE INSTRUCTIONS: CALCULATORS ARE PERMITTED (ONLY ONE PER STUDENT)

ANSWER ALL QUESTIONS IN THE SPACES PROVIDED IN THIS QUESTION PAPER

QUESTION 1: PHYSICS AND MEASUREMENT

1.1. A rather ordinary middle-aged man is in the hospital for a routine check-up. The nurse writes the quantity 200 on his medical chart but forgets to include the units. Which of the following quantities could the 200 represent? (Tick your choice)
(a) his mass in kilograms
(b) his height in metres
(c) his height in centimetres
(d) his height in millimetres
(e) his age in months

Justify your answer.
1.2. How many years older will you be 1.00 gigasecond from now? (Assume that a year has 365 days.)
1.3. According to Albert Einstein, energy can be related to mass through the equation
$E=\frac{1}{2} m c^{2}$
where c is the speed of light in a vacuum.
Prove that this equation is dimensionally consistent.

QUESTION 2: KINEMATICS, VECTORS AND DYNAMICS

2.1. State Newton's second law of motion.
2.2. The diagram shows the trajectory of a projectile.

Suppose the projectile was fired again from the same starting position and with the same launch angle, but this time, the initial speed of the projectile is increased. On the same diagram given below, sketch the new trajectory of the projectile.

2.3. A runner accelerates uniformly from rest to $9.00 \mathrm{~m} / \mathrm{s}$ in 1.28 s . What is her acceleration?
2.4. Suppose the pulley in the diagram is suspended by from the ceiling.

Determine the acceleration of the masses after they are released. Ignore the mass of the pulley and cords.

QUESTION 3: ENERGY, LINEAR MOMENTUM AND COLLISIONS

3.1. State one difference between a perfectly elastic and a perfectly inelastic collision.
3.2. A bat strikes a 0.145 kg ball. Just before impact, the ball is traveling horizontally to the right at a velocity of $50.0 \hat{i} \mathrm{~m} / \mathrm{s}$ and it leaves the bat traveling to the left at an angle of 30.0° above the horizontal with a speed of $65.0 \mathrm{~m} / \mathrm{s}$. The ball and bat are in contact for 1.75 milliseconds.
3.2.1. What is the final velocity of the ball?
3.2.2. Determine the average impulse on the ball during this interaction.
3.3. If one hydrogen atom is located at the origin of the x axis and another hydrogen atom is located at a large positive position x, the potential energy of the pair of hydrogen atoms is given by
$U(x)=-\frac{C_{6}}{x^{6}}$
where C_{6} is a positive constant.
Is the force between the atoms attractive or repulsive?

QUESTION 4: ROTATIONAL DYNAMICS AND ELASTIC PROPERTIES OF SOLIDS

4.1. Explain why concrete with steel reinforcing rods embedded inside it is used in construction rather than plain concrete?
4.2. At $t=0$, a wheel (radius 0.200 m), slows down with an angular acceleration of constant magnitude $50 \mathrm{rad} / \mathrm{s}^{2}$. At $\mathrm{t}=3.00 \mathrm{~s}$, a point on the rim of the wheel has an angular speed of $250 \mathrm{rad} / \mathrm{s}$. Through what angular displacement did the wheel turn between $t=0$ and $t=3.00 \mathrm{~s}$?
4.3. The rod in the diagram has a length 4.00 m . Calculate the torque (magnitude and direction) on the rod about point O due to the force \vec{F} of magnitude is $F=10.0 \mathrm{~N}$.

QUESTION 5: UNIVERSAL GRAVITATION

Constants

$G=6.674 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
5.1. State Kepler's second law. You must include a sketch diagram illustrating the law.
5.2. Determine the magnitude and direction of the net gravitational force on mass A due to masses B and C in the diagram.

5.3. The mass of the planet Venus is 81.5% that of the Earth, and its radius is 94.9% that of the Earth. Compute the acceleration due to gravity $g_{\text {Venus }}$ on the surface of Venus using only this information and $g_{\text {Earth }}=9.8 \mathrm{~m} \mathrm{~s}^{-2}$.

QUESTION 6: FLUID MECHANICS

6.1. The diagram shows a liquid inside a container.

6.1.1. Between positions (a), (b) and (c), where is the fluid absolute pressure greatest?
6.1.2. Between positions (a), (b) and (c), where is the fluid absolute pressure lowest?

Justify your answers above.
6.2. A solid aluminium ingot weighs 89 N in air. The density of aluminium is $2700 \mathrm{~kg} \mathrm{~m}^{-3}$. What is the weight of the ingot in water?
6.3. How fast does water flow from a tiny hole at the bottom of a huge 5.3 m deep storage tank filled with water?

QUESTION 7: OSCILLATIONS AND WAVES

7.1. A box containing a rock is attached to a horizontal spring and is oscillating on a frictionless surface. At one instant while the spring is stretched out to its maximum displacement, the rock is suddenly lifted out of the box without disturbing the box.

Will the following characteristics of the oscillatory motion increase, decrease or remain the same after the rock is lifted out of the box?

7.1.1. Frequency

7.1.2. Amplitude

7.2. A certain transverse wave is described by
$y(x, t)=(6.50 \mathrm{~mm}) \cos 2 \pi\left[\frac{x}{28.0 \mathrm{~cm}}-\frac{t}{0.0360 \mathrm{~s}}\right]$
Use the information in this wave function to determine the wave's
7.2.1. angular frequency.
7.2.2. wave number.
7.2.3. speed of propagation (in cm / s).
7.2.4. direction of propagation.

QUESTION 8: THERMODYNAMICS

Constants

$\alpha_{\text {Aluminum }}=24 \times 10^{-6}{ }^{\circ} \mathrm{C}^{-1}$
8.1. Describe any four characteristics of the ideal gas used for the kinetic theory of gases.
8.2. An aluminium sphere has a diameter of 8.75 cm in diameter at $30^{\circ} \mathrm{C}$. Determine its change in volume if it is heated from up to $180^{\circ} \mathrm{C}$
8.3. A petrol engine takes in 10000 J of heat and delivers 2000 J of mechanical work per cycle. What is the thermal efficiency of this engine?

QUESTION 9: ELECTRICITY AND MAGNETISM

Constants

$\mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} \mathrm{~m} \mathrm{~A}^{-1}$
9.1. Draw the electric field around an electric charge of
9.1.1. 2 nC

9.1.2. -2 nC

9.2. Each capacitance in the diagram has a capacitance of $C=4.00 \mu \mathrm{~F}$.

Calculate the equivalent capacitance $C_{a b}$ between points a and b.
9.3. Determine the magnitude and direction of the force between two parallel wires 25 m long and 4.0 cm apart, each carrying 35 A in the same direction.

INFORMATION SPACE

	Plane Geometry, Areas and Volumes of Geometric Figures		
Shape	Perimeter	Area	Volume
Square	$P=4 s$	$A=s^{2}$	
Rectangle	$P=2 l+2 w$	$A=l w$	
Circle	$C=2 \pi r$	$A=\pi r^{2}$	
Sector of a circle		$A=\frac{1}{2} \theta r^{2}$	
Triangle		$A=\frac{1}{2} b h$	$A=\frac{1}{2}\left(b_{2}+b_{1}\right) h$
Trapezoid		$A=b h$	$V=s^{3}$
Parallelogram	$P=2 a+2 b$	$A=6 s^{2}$	$V=l w h$
Cube		$A=2(l w+l h+w h)$ and bottom $)$	$V=\pi r^{2} h$
Rectangular solid		$A=4 \pi r^{2}$	$V=\pi r^{2} h$
Circular cylinder		$A=\pi r l$	$V=\frac{4}{3} \pi r^{3}$
Non-circular cylindrical prisms			$V=\frac{1}{3} \pi r^{2} h$
Sphere			
Right Circular Cone			

1D Motion Continued	2D Motion
$\begin{aligned} & v_{x f}=v_{x i}+a_{x} t \\ & v_{x a v g}=\frac{v_{x i}+v_{x f}}{2} \\ & \Delta x=v_{x i} t+\frac{1}{2} a_{x} t^{2} \end{aligned}$	Projectile Motion: $\begin{aligned} & t_{\text {total }}=\frac{v_{i} \sin \theta_{i}}{g} \\ & h=\frac{v_{i}^{2} \sin ^{2} \theta_{i}}{2 g} \\ & R=\frac{v_{i}^{2} \sin 2 \theta_{i}}{g} \\ & \hline \end{aligned}$
$\Delta x=v_{x f} t-\frac{1}{2} a_{x} t^{2}$ $\Delta x=\left(\frac{v_{x i}+v_{x f}}{2}\right) t$	Uniform Circular Motion: $\begin{array}{ll} a_{\mathrm{c}}=\frac{v^{2}}{r} & \\ \omega=\frac{2 \pi}{T} & \\ a_{\mathrm{c}}=r \omega^{2} & v=r \omega \\ & F_{r}=\frac{2 \pi r}{r} \\ \hline \end{array}$
$\Delta v=v_{f}-v_{i}=\int_{t_{i}}^{t_{f}} a d t$	$\underline{\text { Forces and Laws of Motion }}$
$\Delta x=x_{f}-x_{i}=\int_{t_{i}}^{t_{f}} v d t$	$\sum \vec{F}=m \vec{a}$

ENERGY, ENEGRY CONSERVATION AND LINEAR MOMENTUM	
Energy	Energy Conservation
$W=\vec{F} \cdot \Delta \vec{r}=F \Delta r \cos \theta \quad W=\int F_{x} d x$	$\Delta K+\Delta U_{g}+\Delta U_{S}=0$ (isolated system, no friction)
$K=\frac{1}{2} m v^{2} \quad U_{g}=m g y \quad U_{S}=\frac{1}{2} k x^{2}$	$\Delta K+\Delta U_{g}+\Delta U_{S}+f_{k} d=0$ (isolated system with friction)
$F_{s}=-k x$	$\Delta K+\Delta U_{g}+\Delta U_{S}=W_{\Sigma F}$ (non-isolated system, no friction)
$F_{x}=-\frac{d U}{d x}$	$\Delta K+\Delta U_{g}+\Delta U_{S}+f_{k} d=W_{\Sigma F}$ (non-isolated system with friction)
$\begin{array}{ll} P=\frac{d E}{d t}=\frac{d W}{d t} & P_{\text {avg }}=\frac{E}{\Delta t}=\frac{W}{\Delta t} \\ P=\vec{F} \cdot \vec{v}=F v \cos \theta & \end{array}$	
Linear Momentum	
$\vec{p}=m \vec{v} \quad \sum \vec{F}=\frac{d \vec{p}}{d t}$	$\Delta \vec{p}=\vec{I}=\vec{F} \Delta t$

UNIVERSAL GRAVITATION

$F_{g}=G \frac{m_{1} m_{2}}{r^{2}}$	$g=G \frac{M_{E}}{R_{E}{ }^{2}}$
$\left(\frac{F_{g}}{m}\right)=G \frac{M_{\text {Planet }}}{r^{2}}$	$T^{2}=\left[\frac{4 \pi^{2}}{G M_{\text {Sun }}}\right] a^{3}$
$U_{g}=-\frac{G M_{E} m}{r}$	

FLUID MECHANICS	
Fluid Pressure and Archimedes' Principle	
$P=\frac{F}{A} \quad P=P_{a t m}+\rho g h \quad \frac{F_{1}}{A_{1}}=\frac{F_{2}}{A_{2}}$	$\text { Fraction submerged }=\rho_{\text {body }} / \rho_{\text {fluid }}$
Fluids in Motion	
Continuity Equation $A v=$ constant	Bernoulli's Equation $P+\frac{1}{2} \rho v^{2}+\rho g y=\text { constant }$
Venturi meter $Q=A_{1} A_{2} \sqrt{\frac{2\left(P_{1}-P_{2}\right)}{\rho\left({A_{1}^{2}}^{2}-A_{2}^{2}\right)}}=A_{1} A_{2} \sqrt{\frac{2 \rho_{\text {mano }} g h}{\rho\left(A_{1}^{2}-A_{2}^{2}\right)}}$	Torricelli's Theorem $v_{1}=\sqrt{2 g h}$
Viscocity $F=\eta \frac{A v}{d}$	Poiseuille's law $Q=\frac{V}{t}=\frac{\pi r^{4} \Delta P}{8 \eta L}$
Stokes' Formula $F_{f}=6 \pi \eta r v \quad \eta=\frac{2}{9} r^{2} \frac{(\rho-\sigma) g}{v_{T}}$	Reynolds number $R e=\frac{2 \rho v r}{\eta}$

OSCILLATIONS AND WAVES

Simple Harmonic Motion

Block-Spring Oscillator

$F=-k x \quad \frac{d^{2} x}{d t^{2}}=-\omega^{2} x \quad \omega=\sqrt{\frac{k}{m}}$
$f=\frac{1}{T} \quad T=\frac{2 \pi}{\omega}$
$x=A \cos (\omega t+\phi)$
$E=\frac{1}{2} k A^{2}$
$v= \pm \omega \sqrt{A^{2}-x^{2}}$

Simple Pendulum
$\frac{d^{2} \theta}{d t^{2}}=-\omega^{2} \theta \quad \omega=\sqrt{\frac{g}{L}}$
Physical Pendulum
$\frac{d^{2} \theta}{d t^{2}}=-\omega^{2} \theta \quad \omega=\sqrt{\frac{m g d}{I}}$
Torsional Pendulum
$\frac{d^{2} \theta}{d t^{2}}=-\omega^{2} \theta \quad \omega=\sqrt{\frac{\kappa}{I}}$

Waves

Travelling Sinusoidal Waves	Sound Waves

$$
\begin{aligned}
& k=\frac{2 \pi}{\lambda} \quad \omega=\frac{2 \pi}{T}=2 \pi f \quad v=f \lambda \quad v=\frac{\omega}{k} \\
& y(x, t)=A \sin (k x \mp \omega t+\phi)=A \sin \left[\frac{2 \pi}{\lambda}(x \mp v t)+\phi\right]
\end{aligned}
$$

$$
\begin{aligned}
& \beta(\text { in } d B)=10 \log \frac{I}{I_{0}} \\
& f^{\prime}=\left[\frac{v \mp v_{0}}{v \pm v_{S}}\right] f \\
& f=\left(f_{1}+f_{2}\right) / 2 \quad f_{\text {Beat }}=f_{1}-f_{2}
\end{aligned}
$$

THERMODYNAMICS

Temperature
$T_{{ }^{\circ} C}=T-273.15$

$$
\alpha=\frac{\Delta L}{L_{i} \Delta T} \quad \beta=\frac{\Delta A}{A_{i} \Delta T} \quad \beta=\frac{\Delta V}{V_{i} \Delta T}
$$

Ideal Gas Laws
$P_{i} V_{i}=P_{f} V_{f} \quad \frac{V_{i}}{T_{i}}=\frac{V_{f}}{T_{f}} \quad \frac{P_{i}}{T_{i}}=\frac{P_{f}}{T_{f}}$
$n=\frac{m}{M} \quad P V=n R T \quad P V=N k_{B} T$

	$Q=m c \Delta T \quad L=\frac{Q}{m}$
Thermodynamic Processes	
PV diagram First Law $W=-\left[\int_{V_{i}}^{V_{f}} P d V\right]$ $\Delta E_{\text {int }}=Q+W$ Isothermal Process $W=n R T \ln \left(\frac{V_{i}}{V_{f}}\right)$	Conduction $P=\frac{Q}{\Delta t}=k A\left\|\frac{d T}{d x}\right\|$ Stefan's Law $P=\sigma A e T^{4}$ Wien's Displacement Law $\lambda_{\max }=\left[\frac{2.898 \times 10^{-3}}{T}\right] \text { metres }$
Kinetic Theory of Gases $P=\frac{2}{3}\left(\frac{N}{V}\right)\left(\frac{1}{2} m_{0} \overline{v^{2}}\right)$ $\frac{1}{2} m_{0} \overline{v^{2}}=\frac{3}{2} k_{B} T$ $E_{\text {int }}=\frac{3}{2} n R T \quad C_{V}=\frac{Q}{n \Delta T}$ $C_{P}=\frac{Q}{n \Delta T}$ Monoatomic Gas $\Delta E_{\text {int }}=n C_{V} \Delta T$ $C_{V}=\frac{3}{2} R$ Adiabatic Process $P V^{\gamma}=$ constant $T V^{\gamma-1}=$ constant $C_{P}=\frac{5}{2} R$ 	Heat Engine $\begin{aligned} & W_{e n g}=Q_{h}-Q_{c} \\ & e=\frac{W_{E n g}}{Q_{h}}=1-\frac{Q_{c}}{Q_{h}} \end{aligned}$ Heat Pump $\begin{aligned} & C O P=\frac{Q_{c}}{W} \\ & W_{\text {pump }}=Q_{h}-Q_{c} \end{aligned}$

BLANK SPACE

