

FIRST NAMES: \qquad
SURNAME: \qquad
STUDENT NUMBER: \qquad

FACULTY OF SCIENCE

DATE 07/01/2019
ASSESSOR

INTERNAL MODERATOR
DURATION 3 HOURS

SESSION: 08:00-11:00
DR. J. CHANGUNDEGA
PROF. L. REDDY
MARKS 100

NUMBER OF PAGES: 15 PAGES, INCLUDING BLANK SPACE AND INFORMATION SPACE INSTRUCTIONS:

CALCULATORS ARE PERMITTED (ONLY ONE PER STUDENT)

ANSWER ALL QUESTIONS IN THE SPACES PROVIDED IN THIS QUESTION PAPER

QUESTION 1: PHYSICS AND MEASUREMENT

1.1. The position of a particle is described by
$y=2 \mathrm{~m}(\cos k x) \quad$ where $k=2 \mathrm{~m}^{-1}$
Is the following equation dimensionally consistent?

Justify your answer.
1.2. If an average person's heartbeat is 80 beats per minute, estimate the order of magnitude of the number of heartbeats in the entire lifetime of a person that lives for 80 years.
1.3. Convert a speed of $100 \mathrm{~km} / \mathrm{h}$ to m / s.
1.4. Multiply $2.079 \times 10^{2} \mathrm{~m}$ by 0.082×10^{-1}. The answer must be in scientific notation. It is not necessary to show your working for this problem.

QUESTION 2: KINEMATICS, VECTORS AND DYNAMICS

2.1. State Newton's first law of motion.
2.2. The graph below is the position-time of an object along the x axis.

2.1.1. When was the object stationary?
2.1.2. What is the final direction of motion of the object?
2.2. A particle is moving at a constant velocity of $\vec{v}=[-2.0 \hat{\imath}+3.5 \hat{\jmath}+2.0 \hat{k}] \mathrm{m} / \mathrm{s}$. The particle starts at $\vec{r}=[1.5 \hat{\imath}-3.1 \hat{\jmath}] \mathrm{m}$ at time $t=0$. What is the position of the particle at time $t=2.0 \mathrm{~s}$

Additional working space is provided on the next page.
2.3. A ball thrown horizontally at $23.7 \mathrm{~m} / \mathrm{s}$ from the roof of a building lands 31.0 m from the bottom of the building. How high is the building?
2.4. Workmen are trying to free a car stuck in the mud. They use three horizontal ropes, producing the forces shown in diagram (aerial view).

Determine the magnitude and direction of the resultant force on the car.

QUESTION 3: ENERGY, LINEAR MOMENTUM AND COLLISIONS

3.1. Does the kinetic energy of a car change more when it speeds up from $10 \mathrm{~m} / \mathrm{s}$ to $15 \mathrm{~m} / \mathrm{s}$ or when it speeds up from $15 \mathrm{~m} / \mathrm{s}$ to $20 \mathrm{~m} / \mathrm{s}$.

Justify your answer.
3.2. Two blocks are connected by a very light string passing over a massless and frictionless pulley as illustrated in the diagram.

Traveling at constant speed, the 20.0 N block moves 75.0 cm to the right and the 12.0 N block moves 75.0 cm downward.

During this process, how much work is done on the 20.0 N block by 3.2.1. the gravitational force?
3.3. A 2.00 kg piece of wood slides on the surface shown in the diagram. The curved sides are perfectly smooth, but the rough horizontal bottom is 30.0 m long and has a coefficient of kinetic friction of 0.200 with the wood. The piece of wood starts from rest 4.00 m above the rough horizontal bottom.

How far along the rough horizontal bottom does the block travel before it comes to rest?

QUESTION 4: ROTATIONAL DYNAMICS AND ELASTIC PROPERTIES OF SOLIDS

4.1. A metal wire of radius r stretches by 0.100 mm when supporting a weight W. If the same length wire is used to support a weight of $3 W$, what would its radius have to be if it still stretches by only 0.100 mm ?
4.2. A square metal plate 0.180 m on each side is pivoted about an axis through point O at its centre, as shown in the diagram.

4.2.1. Use Pythagoras' theorem to determine the length of the dotted distance.

This is required for Question 4.2.2.
4.2.2. Calculate the net torque (magnitude and direction) about this axis due to the two forces indicated in the diagram. The magnitudes of the forces are $F_{1}=18.0 \mathrm{~N}$ and $F_{2}=26.0 \mathrm{~N}$.
4.3. A small block of mass 0.0250 kg is placed on a frictionless, horizontal surface and it is attached to a massless cord passing through a hole in the surface as shown in the diagram.

The block is initially made to revolve at a distance of 0.300 m from the hole with an angular speed of $1.75 \mathrm{rad} / \mathrm{s}$. The cord is then pulled from below, shortening the radius of the circle of revolution to 0.150 m . Modelling the block as a particle, determine the new angular speed of the block.

QUESTION 5: UNIVERSAL GRAVITATION

Constants

$$
\begin{aligned}
& G=6.674 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2} \\
& R_{\text {Earth }}=6.37 \times 10^{6} \mathrm{~m} \\
& M_{\text {Earth }}=5.97 \times 10^{24} \mathrm{~kg}
\end{aligned}
$$

5.1. People sometimes ask, "What keeps a satellite up in its orbit around the Earth?" How would you respond?

5.2. What is a geosynchronous satellite?
(2)
5.3. The mean distance of the Moon from the Earth is $3.84 \times 10^{8} \mathrm{~m}$ and on average, the Moon takes 27.4 days to orbit Earth. Use Kepler's third law to determine the mass of the Earth.
5.4. Assume that the planet Mars is a perfect sphere of uniform density with the following properties.

$$
\begin{aligned}
& M_{\text {Mars }}=6.42 \times 10^{23} \mathrm{~kg} \\
& r_{\text {Mars }}=3.39 \times 10^{6} \mathrm{~m} \text { (mean radius of orbit around the Sun) }
\end{aligned}
$$

Prove that the average gravitational acceleration on the surface of Mars is $3.73 \mathrm{~m} \mathrm{~s}^{-2}$.
5.5. What is the speed of a satellite that orbits around the Earth at a height of 780 km above the Earth's surface?

INFORMATION SPACE

Plane Geometry, Areas and Volumes of Geometric Figures			
Shape	Perimeter	Area	Volume
Square	$P=4 s$	$A=s^{2}$	
Rectangle	$P=2 l+2 w$	$A=l w$	
Circle	$C=2 \pi r$	$A=\pi r^{2}$	
Sector of a circle		$A=\frac{1}{2} \theta r^{2}$	
Triangle		$A=\frac{1}{2} b h$	
Trapezoid		$A=\frac{1}{2}\left(b_{2}+b_{1}\right) h$	$V=s^{3}$
Parallelogram	$P=2 a+2 b$	$A=2(l w+l h+w h)$	$V=l w h$
Cube		$A=2 \pi r h(w i t h o u t ~ t o p ~$ and bottom)	$V=\pi r^{2} h$
Rectangular solid		$A=4 \pi r^{2}$	$V=A h$
Circular cylinder		$A=\pi r l$	$V=\frac{4}{3} \pi r^{3}$
Non-circular cylindrical prisms		$V=\frac{1}{3} \pi r^{2} h$	
Sphere			
Right Circular Cone			

KINEMATICS, VECTORS AND DYNAMICS

1D Motion Continued	2D Motion
$\begin{aligned} & v_{x f}=v_{x i}+a_{x} t \\ & \quad v_{x a v g}=\frac{v_{x i}+v_{x f}}{2} \\ & \Delta x=v_{x i} t+\frac{1}{2} a_{x} t^{2} \end{aligned}$	Projectile Motion: $\begin{aligned} t_{\text {total }}=\frac{v_{i} \sin \theta_{i}}{g} & \\ & h=\frac{v_{i}^{2} \sin ^{2} \theta_{i}}{2 g} \\ & R=\frac{v_{i}^{2} \sin 2 \theta_{i}}{g} \end{aligned}$
$\Delta x=v_{x f} t-\frac{1}{2} a_{x} t^{2}$ $\Delta x=\left(\frac{v_{x i}+v_{x f}}{2}\right) t$	Uniform Circular Motion: $\begin{array}{ll} a_{\mathrm{c}}=\frac{v^{2}}{r} & \\ \omega=\frac{2 \pi}{T} & \\ a_{\mathrm{c}}=r \omega^{2} & v=r \omega \\ & F_{r}=\frac{m v^{2}}{r} \end{array}$
$\Delta v=v_{f}-v_{i}=\int_{t_{i}}^{t_{f}} a d t$	Forces and Laws of Motion
$\Delta x=x_{f}-x_{i}=\int_{t_{i}}^{t_{f}} v d t$	$\sum \vec{F}=m \vec{a}$

ENERGY, ENEGRY CONSERVATION AND LINEAR MOMENTUM	
Energy	Energy Conservation
$W=\vec{F} \cdot \Delta \vec{r}=F \Delta r \cos \theta \quad W=\int F_{x} d x$	$\begin{aligned} & \Delta K+\Delta U_{g}+\Delta U_{S}=0 \\ & \text { (isolated system, no friction) } \end{aligned}$
$K=\frac{1}{2} m v^{2} \quad U_{g}=m g y \quad U_{S}=\frac{1}{2} k x^{2}$	$\Delta K+\Delta U_{g}+\Delta U_{S}+f_{k} d=0$ (isolated system with friction)
$F_{s}=-k x$	$\Delta K+\Delta U_{g}+\Delta U_{S}=W_{\Sigma F}$ (non-isolated system, no friction)
$F_{x}=-\frac{d U}{d x}$	$\Delta K+\Delta U_{g}+\Delta U_{S}+f_{k} d=W_{\sum F}$ (non-isolated system with friction)
$\begin{array}{ll} P=\frac{d E}{d t}=\frac{d W}{d t} & P_{\text {avg }}=\frac{E}{\Delta t}=\frac{W}{\Delta t} \\ P=\vec{F} \cdot \vec{v}=F v \cos \theta & \end{array}$	
Linear Momentum	
$\vec{p}=m \vec{v} \quad \sum \vec{F}=\frac{d \vec{p}}{d t}$	$\Delta \vec{p}=\vec{I}=\vec{F} \Delta t$

ROTATIONAL MOTION AND ELASTIC PROPERTIES OF SOLIDS

Rotational Motion

Elastic Properties of Solids

$$
Y=\frac{F / A}{\Delta L / L_{i}} \quad S=\frac{F / A}{\Delta x / h} \quad B=-\frac{\Delta P}{\Delta V / V_{i}}
$$

	UNIVERSAL GRAVITATION
$F_{g}=G \frac{m_{1} m_{2}}{r^{2}}$	$g=G \frac{M_{E}}{R_{E}{ }^{2}}$
$\left(\frac{F_{g}}{m}\right)=G \frac{M_{\text {Planet }}}{r^{2}}$	$T^{2}=\left[\frac{4 \pi^{2}}{G M_{\text {Sun }}}\right] a^{3}$
$U_{g}=-\frac{G M_{E} m}{r}$	

BLANK SPACE

