

FACULTY OF SCIENCE

DEPARTMENT OF PURE AND APPLIED MATHEMATICS

NATIONAL DIPLOMA IN ENGINEERING: MINERAL SURVEYING/EXTRACTION METALLURGY

> MODULE MNM31-1 NUMERICAL METHODS CAMPUS DFC

> > MAIN EXAMINATION

DATE: 09 /11/2019

SESSION: 8:H30 - 11:30

ASSESSOR

DR B.P. NTSIME

INTERNAL MODERATOR DR D.M. MOTHIBI

DURATION: 3 HRS

MARKS: 75 MARKS

SURNAME & INITIALS:

STUDENT NUMBER:

COURSE:

CONTACT NO:

INSTRUCTIONS : ANSWER ALL QUESTIONS BY CREATING APPROPRIATE MATHEMATICA CODES NO EXTERNAL STORAGE DEVICES ARE PERMITTED NON-PROGRAMMABLE SCIENTIFIC CALCULATORS ALLOWED

REQUIREMENTS: NONE

Question 1

a) Show graphically that $f(x) = x \log_{10} x - 1.2$, has the root in [1,2]. [5]

b) Use the following methods to find the root of f within a tolerance criterion $|f(x)| < 10^{-6}$, determining the number of iterations required

(i) the secant method	[10]
(iii) the Newton-Raphson method with $x_0=1.06$	[10]

Question 2

a) (i) Use the inbuilt *Mathematica* solver to solve the following system of equations.

$x_1 + 2x_2 + 2x_3 = 4$	
$4x_3 - x_2 + 3x_1 = 25$	[5]
$3x_1 - x_3 + 2x_2 = -6$	

b) Consider the data presented in the table below

x_i	f_i
3	0
6	0.0872
9	0.1736
12	0.2588
15	0.3420
18	0.4426

(i) Find the polynomial of highest possible degree that interpolates f.

(ii) Find the polynomial of degree 2, $P_2(x)$, that best fits the data in the least squares sense.

(iii) Graph the interpolating polynomial, P_2 and the data points on the same axes.

[10]

Question 3

a) Solve the following system on linear equations using the Gauss Seidel method. Terminate iterations when the infinity norm of the residual is 10^{-6} . Use the ZERO vector as starting value.

$$2p - 3q = 4 - 6t$$

$$4 p + q = -3 = 3 q + t - 2$$
 [10]

Question 4

Solve the set of non-linear equations

$$6x^4 + y^4 = 6x^4y^4$$
 and, $12x^4 + 2y^4 = 12x^4y^4$

using Newton's method with starting values for $x_0 = 0.5$ and $y_0 = 0.5$. Terminate the method when $||f(x)||_{\infty} < 10^{-4}$. [10]

Question 5

5.1 Use trapezoidal rule to approximate $\int_{0}^{0.5} \frac{1}{\sqrt{1-x}} dx$

using 50 sub-intervals

[5]

5.2 Use Euler's method with a step size of h = 0.4 to find an approximate solution of the following IVP

$$xy' - 3y = 0$$
, $y(-3) = 2$

over $-3 \le x \le 5$. Graph the solution, as well as the analytic solution, which is $y(x) = \frac{-2x^3}{27}$. [10]