FACULTY OF SCIENCE

DEPARTMENT OF PURE AND APPLIED MATHEMATICS
NATIONAL DIPLOMA IN ENGINEERING: MINERAL SURVEYING/EXTRACTION METALLURGY

MODULE MNM31-1 NUMERICAL METHODS
CAMPUS DFC
MAIN EXAMINATION

DATE: $09 / 11 / 2019$

ASSESSOR

INTERNAL MODERATOR

DURATION: 3 HRS

SESSION: 8:H30-11:30

DR B.P. NTSIME

DR D.M. MOTHIBI

MARKS: 75 MARKS

SURNAME \& INITIALS:

STUDENT NUMBER:

COURSE:

CONTACT NO:

INSTRUCTIONS : ANSWER ALL QUESTIONS BY CREATING APPROPRIATE MATHEMATICA CODES
NO EXTERNAL STORAGE DEVICES ARE PERMITTED
NON-PROGRAMMABLE SCIENTIFIC CALCULATORS ALLOWED

REQUIREMENTS:
NONE

Question 1

a) Show graphically that $f(x)=\operatorname{xlog}_{10} x-1.2$, has the root in $[1,2]$.
b) Use the following methods to find the root of f within a tolerance criterion $|f(x)|<10^{-6}$, determining the number of iterations required
(i) the secant method
(iii) the Newton-Raphson method with $x_{0}=1.06$

Question 2

a) (i) Use the inbuilt Mathematica solver to solve the following system of equations.

$$
\begin{align*}
& x_{1}+2 x_{2}+2 x_{3}=4 \\
& 4 x_{3}-x_{2}+3 x_{1}=25 \tag{5}\\
& 3 x_{1}-x_{3}+2 x_{2}=-6
\end{align*}
$$

b) Consider the data presented in the table below

x_{i}	f_{i}
3	0
6	0.0872
9	0.1736
12	0.2588
15	0.3420
18	0.4426

(i) Find the polynomial of highest possible degree that interpolates f.
(ii) Find the polynomial of degree $2, P_{2}(x)$, that best fits the data in the least squares sense.
(iii) Graph the interpolating polynomial, P_{2} and the data points on the same axes.
[10]

Question 3

a) Solve the following system on linear equations using the Gauss Seidel method. Terminate iterations when the infinity norm of the residual is 10^{-6}. Use the ZERO vector as starting value.

$$
\begin{gather*}
2 p-3 q=4-6 t \\
4 p+q=-3=3 q+t-2 \tag{10}
\end{gather*}
$$

Question 4

Solve the set of non-linear equations

$$
6 x^{4}+y^{4}=6 x^{4} y^{4} \quad \text { and, } 12 x^{4}+2 y^{4}=12 x^{4} y^{4}
$$

using Newton's method with starting values for $x_{0}=0.5$ and $y_{0}=0.5$. Terminate the method when $\|f(x)\|_{\infty}<10^{-4}$.

Question 5

5.1 Use trapezoidal rule to approximate

$$
\begin{equation*}
\int_{0}^{0.5} \frac{1}{\sqrt{1-x}} d x \tag{5}
\end{equation*}
$$

using 50 sub-intervals
5.2 Use Euler's method with a step size of $h=0.4$ to find an approximate solution of the following IVP

$$
\mathrm{xy}^{\prime}-3 y=0, \quad y(-3)=2
$$

over $-3 \leq x \leq 5$. Graph the solution, as well as the analytic solution, which is $y(x)=\frac{-2 x^{3}}{27}$. [10]

