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INSTRUCTIONS:

1. The paper consists of 11 printed pages, excluding the front page.

2. Read the questions carefully and answer all questions.

3. Write out all calculations (steps) and motivate all answers.

4. Questions are to be answered on the question paper in the space provided. Please indicate
when the blank side of a page is used.

5. Good luck - write well :-)
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SECTION A: Theory [25]
Question 1 [6]

State each of the following:

(a) The definition of a charge. (2)

(b) A condition under which the order of integration can be changed for a function that is
dependent on a parameter. (2)

(c) The Hahn Decomposition Theorem. (2)
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Question 2 [7]

State and prove the Monotone Convergence Theorem.
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Question 3 [12]

Complete the proof of the Radon Nikodým Theorem for finite measures:
Radon Nikodým Theorem (finite measures). Let λ and µ be finite measures defined on A and
suppose λ� µ. Then there exists a function f ∈M+(X,A) such that

λ(E) =

∫
E

f dµ, E ∈ A.

Moreover, the function f is uniquely determined µ-almost everywhere.

For c > 0, let (P (c), N(c)) be a Hahn decomposition for the charge λ− cµ. If k ∈ N, consider the
measurable sets

A1 = N(c), Ak+1 = N ((k + 1)c) \
k⋃

j=1

Aj.

(a) Show, for each measurable subset E of Ak, that (k − 1)cµ(E) ≤ λ(E) ≤ kcµ(E) (3)

Define B by

B = X\
∞⋃
j=1

Aj =
∞⋂
j=1

P (jc).

(b) Show that µ(B) = 0 and infer that λ(B) = 0. (2)
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Define

fc(x) =

{
(k − 1)c if x ∈ Ak

0 if x ∈ B.
and we use the above to show that, for each E ∈ A,∫

E

fc dµ ≤ λ(E) ≤
∫
E

(fc + c) dµ ≤
∫
E

fc dµ+ cµ(X).

(c) Show only that
∫
E
fc dµ ≤ λ(E). (4)
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Continuing, we arrive at the result. Finally, for uniqueness almost everywhere, suppose there is
h ∈M+ such that

λ(E) =

∫
E

f dµ =

∫
E

h dµ for all E ∈ A.

(d) Show that h = f µ-almost everywhere. (3)
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SECTION B: Problems [25]
Question 4 [6]

Let (R,B, µ) be a measure space, where B denotes the Borel σ-algebra and λ denotes the Lebesgue
measure. Furthermore, let

f(x) =

{
x2 if x ∈ Q
0 otherwise

(a) Is f measurable? Explain. (3)

(b) Determine
∫
fdλ. (3)
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Question 5 [4]

Let (R,B, λ) be a measure space, where B denotes the Borel σ-algebra and λ denotes the Lebesgue
measure. If f(x) =

∣∣ 1
x

∣∣χR−{0}, determine
∫
fdλ.
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Question 6 [4]

Prove or disprove the following independent statements:

(a) Let λ and µ be σ-finite measures defined on A. Then for each E ∈ A there exists a function
f ∈M+(X,A) such that λ(E) =

∫
E
fdµ. (2)

(b) If ν � λ and λ ⊥ µ then ν ⊥ µ, for measures ν, λ, µ. (2)
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Question 7 [7]

Let X = (0,∞), B be the Borel sets of X, and λ be the Lebesgue measure. Calculate, with

motivation, limn In where fn(x) =
e−nx√
x

and

In =

∫
fn dλ.
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Question 8 [4]

If λ and µ are σ-finite measures on (X,A), and λ� µ, and µ� λ, then show that

dλ

dµ
=

1

dµ/dλ
, almost everywhere.


