UNIVERSITY OF JOHANNESBURG

	DEPARTMENT OF M	ATHEMATICS AND APPLIED MATHEMATICS
	MODULE	MAT8X08 MEASURE AND INTEGRATION THEORY
	CAMPUS	АРК
	EXAM	NOVEMBER 2019
Dat	= 07/11/2019	Session $08:30 - 13:30$
Ass	ESSOR	Dr G Braatvedt
External Moderator		Prof B Watsor
Duf	ation 5 Hours	50 Marks
Sur	NAME AND INITIALS:	

Student number:

Tel No.:

INSTRUCTIONS:

- 1. The paper consists of **11** printed pages, **excluding** the front page.
- 2. Read the questions carefully and answer all questions.
- 3. Write out all calculations (steps) and motivate all answers.
- 4. Questions are to be answered on the question paper in the space provided. Please indicate when the blank side of a page is used.
- 5. Good luck write well :-)

Question 1	SECTION A: Theory [25]	[6]		
State each of the following:				
(a) The definition of a <i>charge</i> .		2)		

(b) A condition under which the order of integration can be changed for a function that is dependent on a parameter. (2)

(c) The Hahn Decomposition Theorem.

(2)

1/11

State and prove the Monotone Convergence Theorem.

[7]

Complete the proof of the Radon Nikodým Theorem for finite measures: Radon Nikodým Theorem (finite measures). Let λ and μ be finite measures defined on \mathcal{A} and suppose $\lambda \ll \mu$. Then there exists a function $f \in M^+(X, \mathcal{A})$ such that

$$\lambda(E) = \int_{E} f \, d\mu, \qquad E \in \mathcal{A}.$$

Moreover, the function f is uniquely determined μ -almost everywhere.

For c > 0, let (P(c), N(c)) be a Hahn decomposition for the charge $\lambda - c\mu$. If $k \in \mathbb{N}$, consider the measurable sets

$$A_1 = N(c), \quad A_{k+1} = N((k+1)c) \setminus \bigcup_{j=1}^{k} A_j.$$

(a) Show, for each measurable subset E of A_k , that $(k-1)c\mu(E) \le \lambda(E) \le kc\mu(E)$ (3)

Define B by

$$B = X \setminus \bigcup_{j=1}^{\infty} A_j = \bigcap_{j=1}^{\infty} P(jc).$$

(b) Show that $\mu(B) = 0$ and infer that $\lambda(B) = 0$.

(2)

$$[12]$$

Define

$$f_c(x) = \begin{cases} (k-1)c & \text{if } x \in A_k \\ 0 & \text{if } x \in B. \end{cases}$$

and we use the above to show that, for each $E \in \mathcal{A}$,

$$\int_{E} f_{c} d\mu \leq \lambda(E) \leq \int_{E} (f_{c} + c) d\mu \leq \int_{E} f_{c} d\mu + c\mu(X).$$

(c) Show only that $\int_E f_c d\mu \leq \lambda(E)$.

(4)

Continuing, we arrive at the result. Finally, for uniqueness almost everywhere, suppose there is $h \in M^+$ such that

$$\lambda(E) = \int_{E} f \, d\mu = \int_{E} h \, d\mu \quad \text{for all } E \in \mathcal{A}.$$

(d) Show that $h = f \mu$ -almost everywhere.

(3)

SECTION B: Problems [25]

Question 4

Let $(\mathbb{R}, \mathcal{B}, \mu)$ be a measure space, where \mathcal{B} denotes the Borel σ -algebra and λ denotes the Lebesgue measure. Furthermore, let

$$f(x) = \begin{cases} x^2 & \text{if } x \in \mathbb{Q} \\ 0 & \text{otherwise} \end{cases}$$

(a) Is f measurable? Explain.

(b) Determine $\int f d\lambda$.

[6]

(3)

[4]

Let $(\mathbb{R}, \mathcal{B}, \lambda)$ be a measure space, where \mathcal{B} denotes the Borel σ -algebra and λ denotes the Lebesgue measure. If $f(x) = \left|\frac{1}{x}\right| \chi_{\mathbb{R}-\{0\}}$, determine $\int f d\lambda$.

Prove or disprove the following independent statements:

(a) Let λ and μ be σ -finite measures defined on \mathcal{A} . Then for each $E \in \mathcal{A}$ there exists a function $f \in M^+(X, \mathcal{A})$ such that $\lambda(E) = \int_E f d\mu$. (2)

(b) If $\nu \ll \lambda$ and $\lambda \perp \mu$ then $\nu \perp \mu$, for measures ν, λ, μ .

(2)

[4]

Let $X = (0, \infty)$, \mathcal{B} be the Borel sets of X, and λ be the Lebesgue measure. Calculate, with motivation, $\lim_{n} I_n$ where $f_n(x) = \frac{e^{-nx}}{\sqrt{x}}$ and

$$I_n = \int f_n \, d\lambda.$$

[7]

[4]

10/11

If λ and μ are σ -finite measures on (X, \mathcal{A}) , and $\lambda \ll \mu$, and $\mu \ll \lambda$, then show that

$$\frac{d\lambda}{d\mu} = \frac{1}{d\mu/d\lambda}$$
, almost everywhere.