

DEPARTMENT OF MATHEMATICS

COURSE: MAT8X06 (THEORY)

NOVEMBER EXAMINATION

DATE: NOVEMBER / DECEMBER 2019

TIME: 3 HOURS

MARKS: 50

Examiners: Dr. E. J. Joubert **External Examiner:** Dr. S. Dorfling

Student number:	PUNTE	%
Surname and initials:		
Contact tel. number:		

- 1. This paper consists of 2 pages.
- $2. \ \ \, {\rm Answer}$ each question in the provided booklet.
- 3. Show all your calculations and arguments clearly.

[15]

[5]

[11]

QUESTION 1

1.1) Let G be a connected, plane graph with n vertices, m edges and r regio	ns. Prove that $n - m + r =$
2.	[5]

1.2) Let G be a planar, bipartite graph of order n and size m, where $n \ge 3$. Prove that $m \le 2n-4$.[5]

1.3) Show that
$$cr(K_{2,2,3}) = 2$$
.

QUESTION 2

2.1) Let S be a dominating set of G. Prove the following: S is a minimal dominating set if and only if for every vertex $v \in S$ at least one of the following holds: [6]

i)
$$\exists w \in V(G) - S : N(w) \cap S = \{v\}.$$

ii) v has no neighbour in S

2.2) Let G be a graph of order n without isolated vertices. Prove that $\gamma(G) \leq \frac{n}{2}$.	[5]
QUESTION 3 3.1) A graph G is 2-factorable if and only if G is $2k$ -regular for some k.	[6] [6]
QUESTION 4 4.1) Prove the following theorem: Every graph of order $n \ge 6$ with at least $3n - 5$ edge two vertex-disjoint cycles. 4.2) State and prove Turàn's theorem.	[18] es contains [10] [8]

TOTAL: 50