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1. Let (X, τ) be a topological space.

(a) (2)Define clearly what we mean by the interior IntX(E) of a set E in X.

(b) (2)Let A and B be subsets of X. Prove that IntX(A) ∩ IntX(B) = IntX (A ∩B).

(c) (6)Let X be a set and let A 7→ A◦ be a mapping from the power set P(X) of X into
P(X) satisfying:

(i) A◦ ⊆ A.

(ii) (A◦)◦ = A◦.

(iii) (A ∩B)◦ = A◦ ∩B◦.
(iv) X◦ = X.

Prove that τ := {G ⊆ X : G = G◦} is a topology on X where for each A ⊆ X we
have IntX(A) = A◦.

Total for Question 1: 10

2. (a) (1)Let X be a set and for each α ∈ A let Xα be a topological space. How do we define
the evaluation map e : X →

∏
α∈AXα induced by the collection {fα : α ∈ A} of

functions f : X → Xα?

(b) (8)For each α ∈ A, let Xα be a topological space. Suppose that X has the weak
topology induced by the collection {fα : α ∈ A} of functions f : X → Xα and
that {fα : α ∈ A} separates points in X. Prove that the evaluation map e : X →∏

α∈AXα induced by {fα : α ∈ A} is an embedding.

Total for Question 2: 9

3. (a) (5)Suppose that X is a first countable space and that E ⊆ X. Prove that x ∈ E if
and only if there is a sequence (xn) contained in E which converges to x.

(b) (5)Let X be a first countable space. From part (a) it follows that F ⊆ X is closed if
and only if whenever (xn) ⊆ F and xn → x, then x ∈ F . Use this (or other means)
to prove that f : X → Y is continuous if and only if whenever xn → x in X, then
f (xn)→ f(x) in Y .

(c) (4)Show that the latter result in part (b) fails if we remove the assumption that X is
a first countable space. Justify all of the statements in your counterexample.

Total for Question 3: 14

4. (a) (2)Define clearly what we mean by the filter generated by the net (xλ) in X.

(b) (6)Prove that every net has a subnet which is an ultranet.

Total for Question 4: 8
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5. (a) (4)For a topological space X, the following are equivalent:

(i) X is compact.

(ii) Each ultranet in X converges.

(iii) Each ultrafilter in X converges.

Show that (iii) ⇒ (i).

(b) (3)Prove that the continuous image of a compact space is compact.

(c) (3)Let f : X → Y be a continuous function between two topological spaces. Suppose
that xλ → x in X. Prove that f (xλ)→ f (x) in Y .

(d) (6)By using part (c), show that a net (xλ) in a product space X :=
∏

α∈AXα converges
to x if and only if for each α ∈ A, πα (xλ)→ πα(x) in Xα.

(e) (5)Finally, use part (a), part (b) and part (d) to state and prove Tychonoff’s Theorem.

Total for Question 5: 21

6. Let X be a topological space.

(a) (2)Define clearly what we mean when we say that the sets H and K are mutually
separated in X.

(b) (4)Prove that a subspace E of X is connected if and only if there are no nonempty,
mutually separated sets H and K in X with E = H ∪K.

(c) (2)Prove that if H and K are mutually separated in X and E is a connected subset
of H ∪K, then either E ⊆ H or E ⊆ K.

Total for Question 6: 8

Total: 70
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