UNIVERSITY OF JOHANNESBURG

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS	
MODULE	MAT8X03 TOPOLOGY
CAMPUS	АРК
SUPPLEMENTARY EXAM	JANUARY 2020
PAPER 1	THEORY

Examiner: Moderator: Duration: 240 Minutes Dr F Schulz Prof T Dube (Unisa) 70 Marks

INSTRUCTIONS:

- 1. The paper consists of **3** printed pages, **including** the front page.
- 2. Read the questions carefully and answer all questions in the provided booklets.
- 3. The Theory Paper is closed book.

- 1. Let (X, τ) be a topological space.
 - (a) Define clearly what we mean by the interior $Int_X(E)$ of a set E in X. (2)
 - (b) Let A and B be subsets of X. Prove that $Int_X(A) \cap Int_X(B) = Int_X(A \cap B)$. (2)
 - (c) Let X be a set and let $A \mapsto A^{\circ}$ be a mapping from the power set $\mathscr{P}(X)$ of X into (6) $\mathscr{P}(X)$ satisfying:
 - (i) $A^{\circ} \subseteq A$.
 - (ii) $(A^{\circ})^{\circ} = A^{\circ}$.
 - (iii) $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}.$
 - (iv) $X^{\circ} = X$.

Prove that $\tau := \{G \subseteq X : G = G^{\circ}\}$ is a topology on X where for each $A \subseteq X$ we have $\operatorname{Int}_X(A) = A^{\circ}$.

Total for Question 1: 10

- 2. (a) Let X be a set and for each $\alpha \in A$ let X_{α} be a topological space. How do we define (1) the evaluation map $e : X \to \prod_{\alpha \in A} X_{\alpha}$ induced by the collection $\{f_{\alpha} : \alpha \in A\}$ of functions $f : X \to X_{\alpha}$?
 - (b) For each $\alpha \in A$, let X_{α} be a topological space. Suppose that X has the weak (8) topology induced by the collection $\{f_{\alpha} : \alpha \in A\}$ of functions $f : X \to X_{\alpha}$ and that $\{f_{\alpha} : \alpha \in A\}$ separates points in X. Prove that the evaluation map $e : X \to \prod_{\alpha \in A} X_{\alpha}$ induced by $\{f_{\alpha} : \alpha \in A\}$ is an embedding.

Total for Question 2: 9

- 3. (a) Suppose that X is a first countable space and that $E \subseteq X$. Prove that $x \in \overline{E}$ if (5) and only if there is a sequence (x_n) contained in E which converges to x.
 - (b) Let X be a first countable space. From part (a) it follows that $F \subseteq X$ is closed if (5) and only if whenever $(x_n) \subseteq F$ and $x_n \to x$, then $x \in F$. Use this (or other means) to prove that $f: X \to Y$ is continuous if and only if whenever $x_n \to x$ in X, then $f(x_n) \to f(x)$ in Y.
 - (c) Show that the latter result in part (b) fails if we remove the assumption that X is (4) a first countable space. Justify all of the statements in your counterexample.

Total for Question 3: 14

- 4. (a) Define clearly what we mean by the filter generated by the net (x_{λ}) in X. (2)
 - (b) Prove that every net has a subnet which is an ultranet.

Total for Question 4: 8

(6)

- 5. (a) For a topological space X, the following are equivalent:
 - (i) X is compact.
 - (ii) Each ultranet in X converges.
 - (iii) Each ultrafilter in X converges.

Show that (iii) \Rightarrow (i).

- (b) Prove that the continuous image of a compact space is compact. (3)
- (c) Let $f: X \to Y$ be a continuous function between two topological spaces. Suppose (3) that $x_{\lambda} \to x$ in X. Prove that $f(x_{\lambda}) \to f(x)$ in Y.
- (d) By using part (c), show that a net (x_{λ}) in a product space $X := \prod_{\alpha \in A} X_{\alpha}$ converges (6) to x if and only if for each $\alpha \in A$, $\pi_{\alpha}(x_{\lambda}) \to \pi_{\alpha}(x)$ in X_{α} .
- (e) Finally, use part (a), part (b) and part (d) to state and prove Tychonoff's Theorem. (5)

Total for Question 5: 21

(4)

- 6. Let X be a topological space.
 - (a) Define clearly what we mean when we say that the sets H and K are mutually (2) separated in X.
 - (b) Prove that a subspace E of X is connected if and only if there are no nonempty, (4) mutually separated sets H and K in X with $E = H \cup K$.
 - (c) Prove that if H and K are mutually separated in X and E is a connected subset (2) of $H \cup K$, then either $E \subseteq H$ or $E \subseteq K$.

Total for Question 6: 8

Total: 70