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1. Let (X, τ) be a topological space.

(a) (2)Define clearly what we mean by a base for τ .

(b) (6)Prove the following: B is a base for a topology on X if and only if

(i) X =
⋃
B∈B B and

(ii) whenever B1, B2 ∈ B with p ∈ B1 ∩B2, there is some B3 ∈ B with

p ∈ B3 ⊆ B1 ∩B2.

Total for Question 1: 8

2. (a) (1)Let X be a set and for each α ∈ A let Xα be a topological space. How do we define
the evaluation map e : X →

∏
α∈AXα induced by the collection {fα : α ∈ A} of

functions f : X → Xα?

(b) (8)For each α ∈ A, let Xα be a topological space. Suppose that the evaluation map
e : X →

∏
α∈AXα induced by the collection {fα : α ∈ A} of functions f : X → Xα

is an embedding. Prove that X has the weak topology induced by {fα : α ∈ A} and
that {fα : α ∈ A} separates points in X.

Total for Question 2: 9

3. (a) (5)Suppose that X is a first countable space and that E ⊆ X. Prove that x ∈ E if
and only if there is a sequence (xn) contained in E which converges to x.

(b) (6)Show that the result in part (a) may fail if we remove the assumption that X is
first countable.

Total for Question 3: 11

4. (a) (3)Define clearly what we mean by a filter F on a set X.

(b) (6)Prove that a filter F on X is an ultrafilter if and only if for each E ⊆ X, either
E ∈ F or X − E ∈ F .

(c) (4)Prove that if a filter F is contained in a unique ultrafilter G , then F = G .

Total for Question 4: 13

5. (a) (4)For a topological space X, the following are equivalent:

(i) X is compact.

(ii) Each ultranet in X converges.

(iii) Each ultrafilter in X converges.

Show that (iii) ⇒ (i).

(b) (3)Prove that the continuous image of a compact space is compact.

(c) (3)Let f : X → Y be a continuous function between two topological spaces. Suppose
that xλ → x in X. Prove that f (xλ)→ f (x) in Y .

(d) (6)By using part (c), show that a net (xλ) in a product space X :=
∏

α∈AXα converges
to x if and only if for each α ∈ A, πα (xλ)→ πα(x) in Xα.
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(e) (5)Finally, use part (a), part (b) and part (d) to state and prove Tychonoff’s Theorem.

Total for Question 5: 21

6. (a) (2)Define clearly what we mean when we say that a topological spaceX is disconnected.

(b) (2)Show that the continuous image of a connected space is connected.

(c) (4)Prove that if X =
⋃
α∈AXα where each Xα is connected and

⋂
α∈AXα 6= ∅, then

X is connected.

Total for Question 6: 8

Total: 70

Page 3


