University of Johannesburg

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS

MODULE MAT8X03

TOPOLOGY

CAMPUS APK

EXAM NOVEMBER 2019

PAPER 1 THEORY

Date: 12/11/2018 Session: 08:30 - 12:30

Dr F Schulz

EXAMINER:

Moderator: Prof T Dube (Unisa)

Duration: 240 Minutes 70 Marks

INSTRUCTIONS:

- 1. The paper consists of **3** printed pages, **including** the front page.
- 2. Read the questions carefully and answer all questions in the provided booklets.
- 3. The Theory Paper is closed book.

	$p \in B_3 \subseteq B_1 \cap B_2$.	
	Total for Question	1: 8
2.	(a) Let X be a set and for each $\alpha \in A$ let X_{α} be a topological space. How do we define the evaluation map $e: X \to \prod_{\alpha \in A} X_{\alpha}$ induced by the collection $\{f_{\alpha} : \alpha \in A\}$ of functions $f: X \to X_{\alpha}$?	(1)
	(b) For each $\alpha \in A$, let X_{α} be a topological space. Suppose that the evaluation map $e: X \to \prod_{\alpha \in A} X_{\alpha}$ induced by the collection $\{f_{\alpha} : \alpha \in A\}$ of functions $f: X \to X_{\alpha}$ is an embedding. Prove that X has the weak topology induced by $\{f_{\alpha} : \alpha \in A\}$ and that $\{f_{\alpha} : \alpha \in A\}$ separates points in X .	(8)
	Total for Question	2: 9
3.	(a) Suppose that X is a first countable space and that $E \subseteq X$. Prove that $x \in \overline{E}$ if and only if there is a sequence (x_n) contained in E which converges to x .	(5)
	(b) Show that the result in part (a) may fail if we remove the assumption that X is first countable.	(6)
	Total for Question	3: 11
4.	(a) Define clearly what we mean by a filter $\mathscr F$ on a set X .	(3)
	(b) Prove that a filter \mathscr{F} on X is an ultrafilter if and only if for each $E\subseteq X$, either $E\in\mathscr{F}$ or $X-E\in\mathscr{F}$.	(6)
	(c) Prove that if a filter \mathscr{F} is contained in a unique ultrafilter \mathscr{G} , then $\mathscr{F}=\mathscr{G}$.	(4)
	Total for Question	1: 13
5.	 (a) For a topological space X, the following are equivalent: (i) X is compact. (ii) Each ultranet in X converges. (iii) Each ultrafilter in X converges. Show that (iii) ⇒ (i). 	(4)
	(b) Prove that the continuous image of a compact space is compact.	(3)
	(c) Let $f: X \to Y$ be a continuous function between two topological spaces. Suppose that $x_{\lambda} \to x$ in X. Prove that $f(x_{\lambda}) \to f(x)$ in Y.	(3)
	(d) By using part (c), show that a net (x_{λ}) in a product space $X := \prod_{\alpha \in A} X_{\alpha}$ converges to x if and only if for each $\alpha \in A$, $\pi_{\alpha}(x_{\lambda}) \to \pi_{\alpha}(x)$ in X_{α} .	(6)
	Page 9	

(2)

(6)

1. Let (X, τ) be a topological space.

(i) $X = \bigcup_{B \in \mathscr{B}} B$ and

(a) Define clearly what we mean by a base for τ .

(b) Prove the following: ${\mathscr B}$ is a base for a topology on X if and only if

(ii) whenever $B_1, B_2 \in \mathcal{B}$ with $p \in B_1 \cap B_2$, there is some $B_3 \in \mathcal{B}$ with

- (e) Finally, use part (a), part (b) and part (d) to state and prove Tychonoff's Theorem. (5)

 Total for Question 5: 21
- 6. (a) Define clearly what we mean when we say that a topological space X is disconnected. (2)
 - (b) Show that the continuous image of a connected space is connected. (2)
 - (c) Prove that if $X = \bigcup_{\alpha \in A} X_{\alpha}$ where each X_{α} is connected and $\bigcap_{\alpha \in A} X_{\alpha} \neq \emptyset$, then X is connected.

Total for Question 6: 8

Total: 70