UNIVERSITY OF JOHANNESBURG

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS

MODULE MAT8X03 TOPOLOGY

CAMPUS APK

EXAM NOVEMBER 2019

PAPER 2 PROBLEMS

DATE: 14/11/2018 Examiner: Moderator: Duration: 360 Minutes Session: 08:30 – 14:30 Dr F Schulz Prof T Dube (Unisa) 40 Marks

INSTRUCTIONS:

- 1. The paper consists of **2** printed pages, **including** the front page.
- 2. Read the questions carefully and answer all questions in the provided booklets.
- 3. You are allowed a copy of the book *General Topology* by Stephen Willard.

- 1. Let \mathbb{Z} be the set of integers and let p > 0 be a prime integer. Define $d_p : \mathbb{Z} \times \mathbb{Z} \to \mathbb{R}$ by $d_p(m,n) = 0$ when m = n; otherwise, $d_p(m,n) = 1/p^r$, where p^r is the largest non-negative integer power of p which divides m - n.
 - (a) Prove that (\mathbb{Z}, d_p) is a metric space.
 - (b) Describe the 1-disk centered at 0 in (\mathbb{Z}, d_p) .

(5)

(1)

(4)

(1)

(1)

(4)

- 2. We introduce a topology on the real line \mathbb{R} as follows: a set is open if and only if it is of the form $U \cup V$ where U is an open subset of \mathbb{R} with the usual topology and V is any subset of the irrationals. Call the resulting space **S**, (the *scattered line*).
 - (a) Verify that the description of an "open set" above indeed yields a topology on S. (4)
 - (b) Describe an efficient nhood base at
 - (i) the rational points
 - (ii) the irrational points

in \mathbf{S} .

- (c) Use part (b) to describe a base for \mathbf{S} .
- (d) Let \mathbb{Q} be the set of rational numbers. Find $\operatorname{Cl}_{\mathbf{S}}(\mathbb{Q})$.

Total for Question 2: 10

- 3. Exhibit topological spaces X, Y and Z such that $X \times Y$ is homeomorphic to $X \times Z$, (4) but Y is not homeomorphic to Z.
- 4. Suppose that X_{α} is a topological space for each $\alpha \in A$ and that $X := \prod_{\alpha \in A} X_{\alpha}$ is (5) endowed with the Tychonoff topology. For each $\alpha \in A$ let $\emptyset \neq F_{\alpha} \subseteq X_{\alpha}$. Prove that

$$\operatorname{Cl}_X\left(\prod_{\alpha\in A}F_\alpha\right) = \prod_{\alpha\in A}\operatorname{Cl}_{X_\alpha}(F_\alpha).$$

- 5. (a) If $(x_{\lambda})_{\lambda \in \Lambda}$ is a net in $\prod_{\alpha \in A} X_{\alpha}$ which clusters at a point x prove that for each $\alpha \in A$, (4) the net $(\pi_{\alpha}(x_{\lambda}))_{\lambda \in \Lambda}$ clusters at $\pi_{\alpha}(x)$ in X_{α} .
 - (b) Show that the converse of part (a) fails even in $\mathbb{R} \times \mathbb{R}$.

Total for Question 5: 8

- 6. Let X and Y be topological spaces with Y compact. If $f : X \to Y$ is closed, onto and (5) has the property that $f^{-1}(\{y\})$ is a compact subspace of X for each $y \in Y$, prove that X is compact.
- 7. Prove that the circle \mathbb{S}^1 is not homeomorphic to any subspace of \mathbb{R} with the usual (4) topology.

Total: 42

Total for Question 1: 6