

FACULTY OF SCIENCE

	Examiner	Moderator
Paper 1		
30 Marks		
Paper 2		
70 Marks		
EM/100		

	Examiner	Moderator
SM		
EM		
FM		

DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS

N DIP: MECHANICAL AND INDUSTRIAL ENGINEERING

MODULE:	ENGINEERING MATHEMATICS 3 (MAT3AW3)
CAMPUS:	DFC
ASSESSMENT:	MAIN EXAMINATION
	(PAPER 2)

DATE: 14 NOVEMBER 2019	SESSION: 08	:30-11:30
ASSESSOR:	DR SM SIME	LANE
MODERATOR:	DR T MASEE	E
DURATION: 180 MINUTES	MARKS:	100
INITIALS AND SURNAME:		
STUDENT NUMBER:		
CONTACT NUMBER:		
NUMBER OF PAGES: 18 PAGES (INCLUDING COVER PAGE)		

INSTRUCTIONS: WRITE YOUR STUDENT NUMBER AND PARTICULARS IN THE SPACE PROVIDED. ANSWER ALL QUESTIONS IN THE SPACES PROVIDED. USE ONLY A PEN FOR WRITING AND DRAWING (BLACK OR BLUE).

THIS EXAM IS ASSESSING SKILLS FOR SOLVING WELL-DEFINED ENGINEERING PROBLEMS AS OUTLINED IN ELO 1.

REQUIREMENTS: INFORMATION BOOKLET (AS ISSUED TO YOU IN THE EXAM)

- 1 -

Question 1

Determine the following

a. $L\{2 t^3 \cosh 2 t\}$

(3)

b. $L^{-1}\left\{\frac{1}{e^{p}(p^{2}-p)}\right\}$

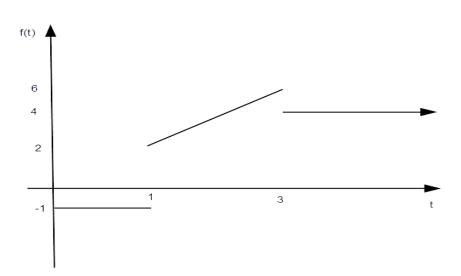
- 2 -

c.
$$\frac{2}{D^2-9} \{\sinh 2t\}$$

(4)

(4)

d. $\frac{1}{D^2+D-5}\{2t^2\}$


e.
$$\int_0^1 \cos \frac{n\pi x}{2} dx$$
 (4)

f. Is the function $g(t) = \begin{cases} t-3, & -2 \le t < 0\\ t+3, & 0 \le t < 2 \end{cases}$ odd, even or neither? (2) Show how you get to your conclusion.

Question 2

Given the function f(t) as

a. Express the given function f(t) in unit step functions.

(3)

•		

b. Express the function f(t) found above in Heaviside form. Fully simplify. (2)

(4)

c. Compute the Laplace transforms of f(t).

- 6 -

Question 3

Determine the unique solutions of the following differential equations by using the **Laplace Transforms**, subject to the indicated initial conditions.

a. y'' + 4y = 5, subject to y(0) = 0 and y'(0) = 3. (8)

(6)

b.
$$x''(t) + 4x'(t) + 6x(t) = 0$$
 subject to $x(0) = 3$ and $x'(0) = 2$.


- 8 -

Question 4

a. The mathematical model of an arbitrary system is described by the following differential equation

 $\theta^{\prime\prime}+6\,\theta^\prime+9\,\theta=t\,e^{-3t}\;.$

Using Laplace Transforms, determine the motion $\theta(t)$ if the initial displacement is $\theta(0) = 6$ and the initial velocity applied to the mass is $\theta'(0) = 2$. Will the system ever come to rest? (6)

b. Use **D-Operator Methods** to solve the differential equation for $\theta(t)$ and use the given initial conditions to determine the particular solution. (8)

- 9 -

Question 5

Use **D-Operator Methods** to solve

a. $(D^2 - 3D + 2)y = e^t \sin t$

(8)

b.
$$\frac{d^3y}{dt^2} - 4\frac{dy}{dt} + 3y = e^t$$
 (7)

- 12 -

c. Solve for **x** only

$$\frac{dx}{dt} - 4x + y = 1$$

$$\frac{dy}{dt} + 6y = t^2 e^t$$
(10)

EXAM (PAPER 2)

EXAM (PAPER 2)

Question 6

a. Find a Fourier series for the following function

$f(x) = \begin{cases} 2x\\ 0 \end{cases}$	$\begin{array}{c} -4 \le x < 0\\ 0 \le x < 4' \end{array}$	f(x) = f(x+8)	(13)

MAT3AW3

EXAM (PAPER 2)

b. The table below defines a discrete function f(x) of period 2π . Determine the Fourier series of f(x) up to the second harmonic. (Work to 2 decimal places) (6)

- 16 -

x	0	$\frac{\pi}{3}$	$\frac{2\pi}{3}$	π	$\frac{4\pi}{3}$	$\frac{5\pi}{3}$
f(x)	0.48	1.78	2.22	-0.48	-1.78	-2.22

End of assessment – Total 102 marks available					
		_			
End of accomment - Total 102 marks available					
End of accomment - Total 102 marks available					
End of accomment - Total 102 marks available					
End of accomment Total 102 marks available					
End of accomment Total 102 membra available					
End of assessment – Total 102 marks available					

Use this space if you want to redo any question(s). Please indicate clearly at the relevant question(s) that the solution is on this page.

- 17 -

L		