MAT2AW2 JANUARY 2020

SM	
EM	
FM	

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS

ELECT	RICAL/MECHANICAL/	NATIONAL DIPLOMA: /INDUSTRIAL/MINING ENGINEERING, N ANALYTICAL CHEMISTRY	MINERAL SURV	EYING AND	
MODULE:	MAT2AW2 ENGINEERIN	NG MATHEMATICS 2			
CAMPUS:	DFC				
		JANUARY EXAMINATION			
DURATION:	3 HOURS		MARKS:	100	
ASSESSOR: MODERATOR:	VL SIXABA MP SELOANE				
INITIALS AND	SURNAME:				
STUDENT NUM	/IBER:				
CONTACT NUM	MBER:				

NUMBER OF PAGES: 19

INSTRUCTIONS: ANSWER ALL QUESTIONS IN THE SPACES PROVIDED.

USE THE BACK OF EACH PAGE FOR ROUGH WORK USE ONLY A PEN FOR WRITING AND DRAWING (BLACK OR BLUE).

REQUIREMENTS: NON PROGRAMMABLE CALCULATORS.

FORMULA BOOKLET (PROVIDED).

(2)

SECTION A [20 MARKS]

INSTRUCTIONS

GIVE ONLY THE FINAL SIMPLIFIED ANSWER (CORRECT TO TWO DECIMAL PLACES WHERE APPLICABLE) IN THE SPACE PROVIDED

- 2 -

2. Find $\frac{dy}{dx}$ if $y = ln(x^2 + y^2)$. (2)

3. Find $\frac{d^2y}{dx^2}$ if $x = e^{-t}$ and $\frac{dy}{dx} = -e^{8t} - 7te^{8t}$ (2)

4. Find $\frac{\partial z}{\partial x}$ at the point (2,8), if $z = \sqrt{4x + y}$. (2)

5. Evaluate $\int \frac{\sin(6x)}{1+\cos(6x)} dx.$ (2)

6. Evaluate $\int x 5^x dx$. (2)

(2)

7. Evaluate $\int \frac{\sinh^{-1} x}{\sqrt{1+x^2}} dx$.

- 3 -

8. Calculate the area of the region bounded by $y = xe^{-x^2}$, x = 2 and the x = 0 axis (2) (see figure below)

9. Solve the differential equation: $\frac{dy}{dx} = y(1-y)$ (2)

10. Find the integrating factor for the equation: $xdy + (y - \cos x)dx = 0$ (2)

JANUARY 2020

(3)

SECTION B [81 MARKS]

- 4 -

INSTRUCTIONS

11. Differentiate $y = x^{\ln x}$

SHOW ALL THE STEPS TAKEN AND GIVE YOUR FINAL ANSWER CORRECT TO TWO DECIMAL PLACES WHERE APPLICABLE. SIMPLIFY YOUR ANSWERS FULLY.

2.	Determine the slope $\frac{dy}{dx}$ of the curve $e^{\frac{x}{y}} = 5x - 2y$.	(4)

•	,	() //	

13.1. $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$. (2)

- 5 -

13.2. $\frac{\partial^2 z}{\partial x^2}, \frac{\partial^2 z}{\partial y^2}, \frac{\partial^2 z}{\partial y \partial x}$ and $\frac{\partial^2 z}{\partial x \partial y}$ (4)

	nsions is represented by the parametric equations $x = ln(t^2 + 1)$ and $y = ln(t^2 + 1$	(2
14.1.	Find an expression for the velocity $\frac{1}{dx}$ of the projectile.	(3
44.0	Find an expression for the coordination d^2y of the projectile	(2)
14.2.	Find an expression for the acceleration $\frac{d^2y}{dx^2}$ of the projectile.	(2
14.2.	Find an expression for the acceleration $\frac{d^2y}{dx^2}$ of the projectile.	(2
14.2.	Find an expression for the acceleration $\frac{d^2y}{dx^2}$ of the projectile.	(2
14.2.	Find an expression for the acceleration $\frac{d^2y}{dx^2}$ of the projectile.	(2
14.2.	Find an expression for the acceleration $\frac{d^2y}{dx^2}$ of the projectile.	(2
14.2.	Find an expression for the acceleration $\frac{d^2y}{dx^2}$ of the projectile.	(2
14.2.	Find an expression for the acceleration $\frac{d^2y}{dx^2}$ of the projectile.	(2
14.2.	Find an expression for the acceleration $\frac{d^2y}{dx^2}$ of the projectile.	(2
14.2.	Find an expression for the acceleration $\frac{d^2y}{dx^2}$ of the projectile.	(2
14.2.	Find an expression for the acceleration $\frac{d^2y}{dx^2}$ of the projectile.	(2
14.2.	Find an expression for the acceleration $\frac{d^2y}{dx^2}$ of the projectile.	(2
14.2.	Find an expression for the acceleration $\frac{d^2y}{dx^2}$ of the projectile.	(2
14.2.	Find an expression for the acceleration $\frac{d^2y}{dx^2}$ of the projectile.	(2
14.2.	Find an expression for the acceleration $\frac{d^2y}{dx^2}$ of the projectile.	(2

15. The velocity μ of blood that flows in a blood vessel of length l and radius R is

$$\mu = \frac{PR^2}{4nl}$$

where P is the pressure of the blood vessel and η (constant) is the viscosity of blood. The application of the drug TPA has the effect of increasing the radius of the artery by 1,5%, decreasing the length of the artery by 0,1% and decreasing the pressure by 2%. Find the percentage change in the velocity of blood flow (5)

- 7 -

16. When two resistors R_1 and R_2 are connected in parallel, the total resistance is $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$. If R_1 and R_2 are increasing at rates of 0.2ω . s^{-1} and 0.01ω . s^{-1} respectively, at what rate is R changing the instant when $R_1 = 12\omega$ and $R_2 = 68\omega$. (5)

- 8 -

MAT2AW2 JANUARY 2020

17. Determine the following integrals

17.1.	$\int 5tan^{-1}(2y)dy$ by using integration by parts.	(5)

JANUARY 2020

17.2. $\int_0^{\frac{\pi}{10}} \sqrt{1 + \cos 5\theta} \ .$	(6)

- 10 -

MAT2AW2	JANUARY 2020
17.3. $\int \frac{-5e^x - 9}{e^{2x} + 4e^x + 3} dx .$	(5)
17.4. $\int \frac{\cos(x) + \sin(x)}{\sin(2x)} dx.$	(3)

17.5.	$\int \sqrt{49 - x^2} dx$ by using trig substitution.	(5)
17.6.	$\int tan^6xsec^4xdx.$	(3)

- 13 -JANUARY 2020

3. Determine the mean value of the function $y = xe^{\frac{\pi}{a}}$ from $x = 0$ to $x = a$	(4)

19. Determine the volume of the solid obtained by rotating the region enclosed by $y = \sqrt[3]{x}$ and

- 14 -

 $y = \frac{1}{4}x \text{ about the } y - \text{axis}$ (5)

20. An apple pie with an initial temperature of 170°C is removed from the oven and left to coo	ol in
a room with an air temperature of 20°C. The drop in temperature is modelled by	

$$\frac{\mathrm{dT}}{\mathrm{dt}} = -r(T - T_e)$$

 $\frac{\mathrm{dT}}{\mathrm{dt}} = -r(T-T_e),$ where T is the temperature of the object, T_e is the (constant) temperature of the environment and r is a constant of proportionality.

20.1.	Find the particular solution of the model equation.	(3)
20.2.	Given that the temperature of the pie initially decreases at a rate of 3°C/min ($T'(0) = -3$ °C/min). How long will it take for the pie to cool to a temperature of 30°C?	i.e. (4)

$T''(0) = -3^{\circ}$ C/min). How long will it take for the pie to cool to a temperature of 30°C?	(4)

21. Solve the following:

21.1.	Bernoulli DE:	$\frac{dy}{dx} + \frac{y}{x} = xy^2 sin(x)$ subject to $y(\pi) = 1$.	(5)
-------	---------------	---	-----

- 16 -

21.2.	Linear DE: $\frac{dy}{dx} + ytan(x) = sin(x)$	$if \ y(0) = 1$	(5)
	Fnd of assessn	nent – Total 101 marks	

Jse this spac question(s) th	e if you want to redo any question(s). Please indicate clearly at the releva at the solution is on this page.

MAT2AW2 JANUARY 2020

