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Question 1 [0.542+242]
(a) Define what is meant by a group.
(b) Let G be the set of all 2 x 2 matrices of the form

a’> 0

0 a
where a € R — {0}. Is G a group under matrix multiplication? Prove your answer.
(You may use the fact that matrix multiplication is associative, without proving it.)

(c) Let G ={0,2,—2,4,—4,6,—6, ...}, i.e., G is the set of all even integers. Define a
binary operation * on G by

1
axb= —ab,
2

where ab stands for the usual product of a and b. Decide if G is a group under the
operation *. Prove your answer.
(d) Let G be a group and a € G. Prove that a has only one inverse.

Question 2 [0.54+2.5 ]
(a) State the subgroup test for finite groups. (No proof is required.)
(b) Let G be an Abelian group and let H and K be subgroups of G. Prove that the
set
HK = {hk | he H, ke K}

is a subgroup of G.

Question 3 [0.541.54+1]
(a) Define what is meant by a generator of a group and by a cyclic group.
(b) Let a be an element of order n of a group G. Let k € N with ged(n, k) = 1. Prove:
a € (a¥).
¢) Determine all generators of Z15. Explain how you arrive at your answer!

Question 4 [0.54+140.5+1]
(a) Let a be the permutation of {1,2,3,4,5,6} defined by

|1 2 3 456
“Tl26 431 5]
Write a as a product of disjoint cycles.
(b) Let a = (23)(13)(24). Determine the order of . Use your result to determine
1002
(c) Define what is meant by an even permutation.
(d) True or false? Let n > 2. If o, 5 € S, are two odd permutations, then the product

af is an odd permutation. Give reasons.

Question 5 [0.54-2+1.5]
(a) Let G and G be groups. Define what is meant by an isomorphism from G to G.
(b) Let G and G be groups and let ® be an isomorphism from G to G. Prove: If eg
is the identity of G and eg is the identity of G, then ®(eq) = eg.

(c) Determine all automorphisms of the group Z;2 under addition. Give a reason why
there are not more automorphisms.



Question 6 [0.54+140.5+1.54+1.5]
(a) Let G be a group, let H < G and a € G. Define what is meant by the left coset
of H containing a.

(b) Let G =U(9) and let H be the subgroup {1, 8} of G. How many different cosets
does H have in G? For each of these different cosets list their elements.

(c) State Lagrange’s Theorem. (You don’t need to prove Lagrange’s Theorem.)

(d) Use Lagrange’s Theorem to prove that every group of prime order is cyclic.

(e) Let G be the group {(1),(124), (142), (35), (124)(35), (142)(35)} of permutations
of the set S = {1,2,3,4,5}. Determine orbg(4) and stabg(4), and verify that for
these two sets the Orbit-Stabiliser Theorem holds.

Question 7 [2+1.5]
(a) Determine all elements of order 6 in the direct product Zg @ Z3. Explain how you
arrive at your answer.

(b) True or false: every Abelian group of order 20 contains an element of order 4.
Give reasons!

Question 8 [0.5+2+1]
(a) Let G be a group and H a normal subgroup of G. What are the elements of the
factor group G/H and how is the operation on G/H defined?

(b) Consider the group G = U(20) and the normal subgroup H = {1,9}. How many
elements does the factor group G/H have? Which element is the identity of G/H?
Choose an element of G/H which is not the identity, and determine its order.

(¢c) True or false: If G is an Abelian group and H a normal subgroup of G, then the
factor group G/H is Abelian? Give reasons.

Question 9 [0.54+2+1]
(a) Let G and G be groups. Define what is meant by a homomorphism from G to G,
and by the kernel of a homomorphism.

(b) Let ® : G — G be a homomorphism. Use the first isomorphism theorem and
Lagrange’s theorem to show that |®(G)| divides both |G| and |G].

(¢) Determine all homomorphic images of Z;; (up to isomorphism). Explain your
answer.

Question 10 [140.5+2]
(a) Let R be the ring of all 2 x 2 matrices with real entries under matrix addition and
matrix multiplication. Let

S:{(g 8) | a,b € R).

Show that S is a subring of R.
(b) Let R be a ring. Define what is meant by a unity of R.
(c) Prove that every finite integral domain is a field.



