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Question 1 [4]
Choose the correct option for the multiple choice questions below and write your answer in the
table provided.

Question Answer
1.1
1.2
1.3
1.4

(1.1) If 3 is an eigenvalue of the matrix A, which value is guaranteed to be an eigenvalue of the
matrix A3? (1)

(a) 3 (b) 27 (c) 9 (d) −3 (e) 0

(1.2) Let p = 4− x and q = 4x2− 1 be vectors in P2. Find the cosine of the angle between p and
q when P2 is equipped with the evaluation inner product at −1

2
and 4. (1)

(a) 1 (b) 0 (c) −1 (d) 1
2

(e) −
√
3
2

(1.3) Consider A =

1 0 −1
1 0 1
0 1 0

. Is A an orthogonal matrix? (1)

(a) Yes (b) No

(1.4) Suppose that V and W are vector spaces with dimensions 7 and 5, respectively. If T : V →
W is a linear transformation having nullity 5, what is rank(T )? (1)

(a) 0 (b) 2 (c) 4 (d) 3 (e) 5
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Question 2 [6]
Determine whether the following statements are TRUE or FALSE. Motivate the statement if
TRUE; provide a counter-example if FALSE.

(a) If the characteristic polynomial of A does not have a constant term, then A is not invertible.
(2)

(b) If Ax = b is an inconsistent linear system, then ATAx = AT b is also inconsistent. (2)

(c) If T : V → V is a linear transformation and V is infinite-dimensional, then the rank of T is
infinite. (2)
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Question 3 [5]
Suppose the characteristic polynomial of some matrix A is found to be

p(λ) = λ(λ+ 6)2(λ+ 3)3.

In each part, answer the question and justify your answer.

(a) Is the rank of A equal to 6? (2)

(b) When will A be diagonalizable? (2)

(c) What is the value of det(A)? (1)
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Question 4 [4]
Let A be an n× n matrix. We say that A is an idempotent matrix if A2 = A.

(a) Give an example of a nonzero, nonidentity idempotent matrix. (1)

(b) Show that λ = 0 and λ = 1 are the only possible eigenvalues of any idempotent matrix A.
(3)
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Question 5 [4]

Prove the Cauchy-Schwarz Inequality for nonzero vectors; that is, prove that if u 6= 0 and v 6= 0
are vectors in an inner product space V , then

|〈u, v〉| ≤ ‖u‖‖v‖.

Question 6 [3]
Let M22 be the inner product space with the inner product defined by:

〈U, V 〉 = u1v1 + 2u2v2 + u3v3 + 3u4v4 ; for U =

[
u1 u2
u3 u4

]
and V =

[
v1 v2
v3 v4

]
in M22.

Find a basis for W⊥ if W is the subspace of symmetric matrices.
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Question 7 [5]

(a) Let V be a real inner product space. For vectors u and v in V suppose that

‖u+ v‖2 = ‖u‖2 + ‖v‖2 .

Show that u and v are orthogonal vectors. (2)

(b) Use part (a) to prove that if an n × n matrix A satisfies ‖Ax‖ = ‖x‖ for all x ∈ Rn, then
A is an orthogonal matrix. (3)
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Question 8 [5]

If b 6= 0, orthogonally diagonlize A =

[
a b
b a

]
.
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Question 9 [3]
Consider the quadratic form 2x2 − 4y2 + 2xy = 1.

(a) Determine whether the quadratic form is positive definite, negative definite, or indefinite.
Show all calculations. (2)

(b) Hence, is this conic section a hyperbola, ellipse or neither? Explain. (1)

Question 10 [3]
Prove or disprove the statement: If A is an n × n symmetric matrix such that the determinant
of every principal submatrix is negative, then A is negative definite.
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Question 11 [3]
Consider the theorem:
Every real n-dimensional vector space V is isomorphic to Rn.

(a) Define the transformation T : V → Rn used to prove this theorem. (1)

(b) Prove that T (defined in (a)) is linear. (2)
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Question 12 [5]
Let T : P2 → R3 be defined by

T (p) =

p(−1)
p(0)
p(1)

 ; p ∈ P2.

(a) Determine the kernel of T . (2)

(b) Hence, is T onto R3? Explain. (1)

(c) Is T invertible? If so, find a formula for T−1. If not, explain why this is not the case. (2)


