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Question 1 [4]

Choose the correct option for the multiple choice questions below and write your answer in the table
provided.

Question Answer
1.1
1.2
1.3
1.4

1.1. Name the quadric surface represented by the equation (1)

−x2 + 6z + 4x + yz + z2 = −5.

(a) Ellipsoid (b) Cone (c) Elliptic paraboloid (d) Cylinder

1.2. An iterated integral which represents half of the area of the region below is given by: (1)

−1 0 1

0

1

2

(a)
∫ 2π

0

∫ 2 sin θ

0
r drdθ (b)

∫ 3π/4

π/4

∫ 2 sin θ

0
r drdθ (c)

∫ π/2

0

∫ 2 cos θ

0
r drdθ (d)

∫ π

π/2

∫ 2 sin θ

0
r drdθ

1.3. Let f be a scalar field and let F be a vector field. Which of the expressions below are meaningful
and results in a vector field: (1)

(i) (div F)∇ f

(ii) ∇ f × div F
(iii) div (curl (∇ f ))

(iv) curl (curl F)

(v) curl F · curl F

(a) i, iv (b) iii, v (c) iv (d) iv, v (e) None of these choices

1.4. Evaluate the line integral given by
∮

C
y3 dx − x3 dy, where C is the circle x2 + y2 = 4. (1)

(a) −12π (b) −24π (c) 24π (d) 18π (e) −18π
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Question 2 [3]

Use the Squeeze Theorem to find the limit below:

lim
(x,y)→(0,0)

x6 sin2
(
y + π

2

)
x4 + y4 .
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Question 3 [5]

Suppose that f is a differentiable function of x and y. Prove that f has a directional derivative in
the direction of any unit vector u = ai + bj and

Du f (x, y) = fx(x, y)a + fy(x, y)b.
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Question 4 [6]

In evaluating a double integral over a region D, a sum of iterated integrals was obtained as follows:∫ −
√

2

−2

∫ 0

−
√

4−y2
arctan

(y
x

)
dx dy +

∫ −1

−
√

2

∫ 0

y
arctan

(y
x

)
dx dy +

∫ −1/
√

2

−1

∫ −
√

1−y2

y
arctan

(y
x

)
dx dy.

Sketch the region D and then evaluate the double integral by first converting it to polar coordinates.
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Question 5 [11]

(5.1) Evaluate the following integral by changing to cylindrical coordinates:∫ 2

−2

∫ √4−y2

−
√

4−y2

∫ 2

√
x2+y2

xz dzdxdy

(6)
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(5.2) Find the volume of the solid that lies within the sphere x2 + y2 + z2 = 4, above the xy−plane, and
below the cone z =

√
x2 + y2. (5)
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Question 6 [4]

Use the change of variables x = u2 − v2, y = 2uv to evaluate the integral
!

R
y dA, where R is the

region bounded by the x− axis and the parabolas y2 = 4 − 4x and y2 = 4 + 4x, y ≥ 0.

Hint: The region R is the image of the square S , where S = [0, 1] × [0, 1].
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Question 7 [4]

Let D ⊆ R2 be the region 1 ≤ x2 + y2 ≤ 4, x ≥ 0, y ≥ 0, and let C be the boundary curve of D
oriented clockwise. Using Green’s Theorem, evaluate the integral

C

√
x2 + y2dx + ln

(
x +

√
x2 + y2

)
dy.
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Question 8 [6]

Consider the vector field F : R3 −→ R3, defined by F(x, y, z) = (3x2, 2xz − y, z), (x, y, z) ∈ R3.

(8.1) Evaluate the following line integrals in the direction of increasing values of “t”. (5)

(i)
∫
φ

F(x, y, z)dr, where φ(t) = (2t3, t, t3), t ∈ [0, 1].

(ii)
∫
ψ

F(x, y, z)dr, where ψ(t) = (2t, t3, t2), t ∈ [0, 1].

(8.2) Is F(x, y, z) a gradient field? Justify your answer using (8.1). (1)
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Question 9 [7]

Consider the vector field F : R3 −→ R3, defined by

F(x, y, z) = (z2 − ey sin x, ey cos x + 2y, 2xz), (x, y, z) ∈ R3.

(9.1) Show that F(x, y, z) is a conservative vector field, and find a potential function for F(x, y, z). (5)
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(9.2) Evaluate
∫

C
(z2 − ey sin x)dx + (ey cos x + 2y)dy + (2xz)dz, where C is the smooth curve from

(0, 1,−1) to (π, 0,−2). (2)


