$\frac{\text { UNIVERSITY }}{\text { JOHANNESBURG }}$
FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS	
MODULE	MAT2B10/MAT01B2
MULTIVARIABLE AND VECTOR CALCULUS	
CAMPUS	APK
ASSESSMENT	MAIN EXAMINATION

DATE : 20 NOVEMBER 2019

ASSESSOR(S):

INTERNAL MODERATOR:
DURATION : 120 MINUTES

20 NOVEMBER 2019
DR C. RATHILAL
MR M. SIAS
DR A. GOSWAMI
MAXIMUM MARKS : 50

SURNAME AND INITIALS \qquad

STUDENT NUMBER \qquad

CONTACT NUMBER \qquad

NUMBER OF PAGES: 1 + 13 PAGES
INSTRUCTIONS: 1. ANSWER ALL THE QUESTIONS ON THE PAPER IN PEN.
2. CALCULATORS ARE ALLOWED.
3. SHOW ALL CALCULATIONS AND MOTIVATE ALL ANSWERS.
4. IF YOU REQUIRE EXTRA SPACE, CONTINUE ON THE ADJACENT BLANK PAGE AND INDICATE THIS CLEARLY.

Question 1
For questions (1.1) - (1.7), please circle only ONE correct answer:
(1.1) Find the following limit, if it exists:
(a) 0
(b) $\frac{1}{\sqrt{2}}$
(c) 8
(d) $\frac{8}{\sqrt{2}}$
(e) The limit does not exist.
(1.2) If $f_{x}(a, b)$ and $f_{y}(a, b)$ both exist, then f is differentiable at (a, b).
(a) True
(b) False
(1.3) If \mathbf{F} and \mathbf{G} are vector fields, then

$$
\operatorname{curl}(\mathbf{F} \bullet \mathbf{G})=\operatorname{curl} \mathbf{F} \bullet \operatorname{curl} \mathbf{G}
$$

(a) True
(b) False
(1.4) Find the Jacobian of the transformation $x=5 \alpha \sin \beta$ and $y=4 \alpha \cos \beta$.
(a) 9α
(b) $-20 \alpha \sin \beta \cos \beta$
(c) -20α
(d) $-\alpha$
(e) 36α
(1.5) Find all the saddle points of the function $f(x, y)=x \sin \frac{y}{3}$.
(a) $(0,3 \pi n)$ where $n \in \mathbb{Z}$
(b) $\left(0, \frac{\pi n}{3}\right)$ where $n \in \mathbb{Z}$
(c) $(3 \pi n, 1)$ where $n \in \mathbb{Z}$
(d) $\left(\frac{3 n}{\pi}, 0\right)$ where $n \in \mathbb{Z}$
(e) $(3 \pi n, 0)$ where $n \in \mathbb{Z}$
(1.6) $\int_{-1}^{1} \int_{0}^{1} e^{x^{2}+y^{2}} \sin y d x d y=0$.
(a) True
(b) False
(1.7) $\int_{-C} f(x, y) d s=-\int_{C} f(x, y) d s$.
(a) True
(b) False

Question 2

(2.1) State the precise definition of the limit of a function of two variables.
(2.2) Use the precise definition of the limit to show that

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{2 x^{3}+y^{3}}{x^{2}+y^{2}}=0
$$

Suppose that f is a differentiable function of x and y. Prove that f has a directional derivative in the direction of any unit vector $\mathbf{u}=a \mathbf{i}+b \mathbf{j}$ and

$$
\mathrm{D}_{\mathbf{u}} f(x, y)=f_{x}(x, y) a+f_{y}(x, y) b .
$$

Question 4

(4.1) Maximize $f(x, y, z)=x y z$ subject to the constraint $g(x, y, z)=x+y+z=k$, where k is a constant and x, y and z are all positive.
(4.2) Use your answer in (4.1) to prove that

$$
\begin{equation*}
\sqrt[3]{x y z} \leq \frac{x+y+z}{3} \tag{2}
\end{equation*}
$$

for all positive real numbers x, y and z.

Question 5

(5.1) Evaluate $\iiint_{E} x^{2} d V$, where E is the solid that lies within the cylinder $x^{2}+y^{2}=1$, above the plane $z=0$, and below the cone $z^{2}=4 x^{2}+4 y^{2}$.
(5.2) Set up the triple integral to determine the volume of the solid region that lies above the cone $z=\sqrt{x^{2}+y^{2}}$, and between the spheres $x^{2}+y^{2}+z^{2}=1$ and $x^{2}+y^{2}+z^{2}=4$. Clearly show all calculations and/or diagrams to justify your answer.

Evaluate the integral $\iint_{E} x^{2} d A$, where E is the region bounded by the ellipse $9 x^{2}+4 y^{2}=36$, using the following transformation; $x=2 u$ and $y=3 v$.

Question 7

Using Green's Theorem, evaluate the line integral $\oint_{C}(y-\cos x) d x+\sin x d y$, where C is the triangle with vertices $(0,0),\left(\frac{\pi}{2}, 0\right),\left(\frac{\pi}{2}, 1\right)$, followed in the anticlockwise direction.

Question 8

Consider the vector field $\mathbf{F}(x, y)=\left(e^{x} \sin y+2 y, e^{x} \cos y+2 x-2 y\right),(x, y) \in \mathbb{R}$.
(8.1) Show that \mathbf{F} is a conservative vector field in \mathbb{R}^{2}.
(8.2) Find the potential function f of \mathbf{F}.
(8.3) Evaluate the integral $\int_{C}\left(e^{x} \sin y+2 y\right) d x+\left(e^{x} \cos y+2 x-2 y\right) d y$, where C is the smooth curve from $(1,0)$ to $(2, \pi)$.
(8.4) Evaluate the integral $\oint_{C}\left(e^{x} \sin y+3 y\right) d x+\left(e^{x} \cos y+2 x-2 y\right) d y$, where C is the unit circle $x^{2}+y^{2}=1$ oriented clockwise.

Question 9

Consider the following Theorem:
If f is a function of three variables that has continuous second order partial derivatives, then $\operatorname{curl}(\nabla f)=\mathbf{0}$.

Using the above Theorem, show that the vector field $\mathbf{F}(x, y, z)=x z \mathbf{i}+x y z \mathbf{j}-y^{2} \mathbf{k}$ is not conservative.

