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Question 1 [7]

For questions (1.1) - (1.7), please circle only ONE correct answer:

(1.1) Find the following limit, if it exists:

lim
(x,y,z)→(0,0,0)

8xy + |z|√
x2 + y2 + z2

(a) 0

(b) 1
√

2

(c) 8

(d) 8
√

2

(e) The limit does not exist.

(1.2) If fx(a, b) and fy(a, b) both exist, then f is differentiable at (a, b).

(a) True

(b) False

(1.3) If F and G are vector fields, then

curl (F • G) = curl F • curl G

.

(a) True

(b) False

(1.4) Find the Jacobian of the transformation x = 5α sin β and y = 4α cos β.

(a) 9α

(b) −20α sin β cos β

(c) −20α

(d) −α

(e) 36α
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(1.5) Find all the saddle points of the function f (x, y) = x sin y
3 .

(a) (0, 3πn) where n ∈ Z

(b) (0, πn
3 ) where n ∈ Z

(c) (3πn, 1) where n ∈ Z

(d) (3n
π
, 0) where n ∈ Z

(e) (3πn, 0) where n ∈ Z

(1.6)
∫ 1

−1

∫ 1

0
ex2+y2

sin y dx dy = 0.

(a) True

(b) False

(1.7)
∫
−C

f (x, y) ds = −

∫
C

f (x, y) ds.

(a) True

(b) False
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Question 2 [6]

(2.1) State the precise definition of the limit of a function of two variables. (2)

(2.2) Use the precise definition of the limit to show that

lim
(x,y)→(0,0)

2x3 + y3

x2 + y2 = 0

(4)
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Question 3 [5]

Suppose that f is a differentiable function of x and y. Prove that f has a directional derivative in
the direction of any unit vector u = ai + bj and

Du f (x, y) = fx(x, y)a + fy(x, y)b.
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Question 4 [5]

(4.1) Maximize f (x, y, z) = xyz subject to the constraint g(x, y, z) = x + y + z = k, where k is a constant
and x, y and z are all positive. (3)
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(4.2) Use your answer in (4.1) to prove that

3
√

xyz ≤
x + y + z

3

for all positive real numbers x, y and z. (2)
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Question 5 [7]

(5.1) Evaluate
#

E
x2dV , where E is the solid that lies within the cylinder x2 + y2 = 1, above the plane

z = 0, and below the cone z2 = 4x2 + 4y2. (4)
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(5.2) Set up the triple integral to determine the volume of the solid region that lies above the cone
z =
√

x2 + y2, and between the spheres x2 + y2 + z2 = 1 and x2 + y2 + z2 = 4. Clearly show all
calculations and/or diagrams to justify your answer. (3)
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Question 6 [4]

Evaluate the integral
!

E
x2dA, where E is the region bounded by the ellipse 9x2 + 4y2 = 36, using

the following transformation; x = 2u and y = 3v.
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Question 7 [4]

Using Green’s Theorem, evaluate the line integral



C
(y − cos x) dx + sin x dy, where C is the triangle

with vertices (0, 0), (
π

2
, 0), (

π

2
, 1), followed in the anticlockwise direction.
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Question 8 [9]

Consider the vector field F(x, y) = (ex sin y + 2y, ex cos y + 2x − 2y), (x, y) ∈ R.

(8.1) Show that F is a conservative vector field in R2. (1)

(8.2) Find the potential function f of F. (3)
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(8.3) Evaluate the integral
∫

C
(ex sin y + 2y) dx + (ex cos y + 2x − 2y) dy, where C is the smooth curve

from (1, 0) to (2, π). (2)

(8.4) Evaluate the integral
�

C
(ex sin y + 3y) dx + (ex cos y + 2x − 2y) dy, where C is the unit circle

x2 + y2 = 1 oriented clockwise. (3)
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Question 9 [3]

Consider the following Theorem:

If f is a function of three variables that has continuous second order partial derivatives, then
curl(∇ f ) = 0.

Using the above Theorem, show that the vector field F(x, y, z) = xzi + xyzj − y2k is not conservative.


