

MODULE	MATOCB2 / MATECB2 ENGINEERING CALCULUS 2B			
	APK SUPPLEMENTA	EMENTARY EXAMINATION		
ASSESSORS:		PROF. R. PANT, DR. A. GOSWAMI		
INTERNAL MODERATOR:		MR. M. SIAS		
DURATION: 120 MI	INUTES	MARKS: 40		
SURNAME AND IN	ITIALS			
STUDENT NUMBE	R			
CONTACT NUMBE	R			
NUMBER OF PAGE	S: 1 + 10 PAGES			

INSTRUCTIONS: 1. ANSWER ALL THE QUESTIONS ON THE PAPER IN PEN.
2. CALCULATORS ARE ALLOWED.
3. SHOW ALL CALCULATIONS AND MOTIVATE ALL ANSWERS.
4. IF YOU REQUIRE EXTRA SPACE, CONTINUE ON THE ADJACENT BLANK "EXTRA PAGES", AND INDICATE THIS CLEARLY.

 $[2 \times 3 = 6 \text{ marks}]$

	Question	Answer
1.1	If $f(x,y) = y \sin^{-1}(xy)$, find $f_y(1, \frac{1}{2})$.	
1.2	Find the partial derivative $\frac{\partial^3 V}{\partial r \partial s \partial t}$ of $V = \ln(r + s^2 + t^3)$.	
1.3	Evaluate the gradient of $f(x, y, z) = \sqrt{x + yz}$ at the point $(1,3,1)$	

Question 2

 $[2 \times 3 = 6 \text{ marks}]$

	Question	Answer
2.1	Evaluate $\int_{0}^{1} \int_{1}^{2} (x+e^{-y}) dx dy.$	
2.2	Evaluate $\iint_R \frac{xy^2}{x^2+1} dA$, where $R = [0,1] \times [-3,3]$.	
	Evaluate $\int_{\pi/4}^{3\pi/4} \int_{1}^{2} r dr d\theta$.	

Question 3

 $[2 \times 2 = 4 \text{ marks}]$

Question	Answer
Evaluate the line integral $\int_C xy^4 ds$, where <i>C</i> is the right half of the circle $x^2 + y^2 = 16$.	
Determine whether or not $F(x,y) = (ye^x + \sin y)\mathbf{i} + (e^x + x\cos y)\mathbf{j}$ is a conservative vector field. Write "Yes" or "No".	

2/10

Find the extreme values of f on the region described by the inequality.

$$f(x,y) = x^2 + y^2 + 4x - 4y, \quad x^2 + y^2 \le 9.$$

[5 marks]

Evaluate the double integral $\iint_D y dA$, where *D* is the triangular region with vertices (0,0), (1,1), and (4,0).

[5 marks]

Evaluate the triple integral $\iiint_T y^2 dV$, where *T* is the solid tetrahedron with vertices (0,0,0), (2,0,0), (0,2,0) and (0,0,2).

[4 marks]

Evaluate the integral by making an appropriate change of variables. $\iint_R \sin(9x^2 + 4y^2) dA$, where *R* is the region in the first quadrant bounded by the ellipse $9x^2 + 4y^2 = 1$.

[3 marks]

Evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y) = xy^2 \mathbf{i} - x^2 \mathbf{j}$, and *C* is given by the vector function $\mathbf{r}(t) = t^3 \mathbf{i} + t^2 \mathbf{j}$, $0 \le t \le 1$.

[3 marks]

7/10

Find the function *f* such that $\mathbf{F} = \nabla f$, where $\mathbf{F}(x, y, z) = yz\mathbf{i} + xz\mathbf{j} + (xy + 2z)\mathbf{k}$.

Extra page 1

Extra page 2

Extra page 3