University of Johannesburg

$$
\frac{\text { UNIVERSITY }}{\text { JOHANNESBURG }}
$$

Faculty of Science

DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS
 MAT0AB2/MATEAB2
 ENGINEERING MATHEMATICS 0AB2/2B2
 EXAM
 11 NOVEMBER 2019

Examiners:
Dr. J. Mba
Dr. F. Schulz
Internal Moderator:
Dr. E. Joubert
Time: 120 minutes
50 MARKS

Surname and initials: \qquad

Student number: \qquad

Tel No.: \qquad

INSTRUCTIONS:

1. The paper consists of $\mathbf{1 1}$ printed pages, excluding the front page.
2. Answer all questions.
3. Write out all calculations (steps) and motivate all answers.
4. Read the questions carefully.
5. Questions are to be answered on the question paper in the space provided. Please indicate when the blank side of a page is used.
6. No calculators are allowed.
7. Good luck!
$\overline{\text { Determine }}$ whether the following statements are TRUE or FALSE. Motivate the statement if TRUE; provide a counterexample if FALSE.
(a) The only $n \times n$ matrix A such that $\operatorname{rank}(A)=n$ is the identity matrix.

TRUE	
FALSE	

(b) If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear transformation and $\operatorname{ker}(T)=\{\overline{0}\}$, then $[T]$ is invertible.

TRUE	
FALSE	

(c) Suppose that $\{\bar{x}, \bar{y}\}$ is a set of linearly independent eigenvectors of A. Then $\bar{x}+\bar{y}$ is also an eigenvector of A.

TRUE
FALSE

(d) If \bar{u} and \bar{v} are vectors in W^{\perp}, then $\bar{u}+\bar{v} \in W^{\perp}$.

TRUE
FALSE

TRUE	
FALSE	

(f) If $A \bar{x}=\bar{b}$ is an inconsistent linear system, then $A^{T} A \bar{x}=A^{T} \bar{b}$ is also inconsistent.

TRUE
FALSE

Find the dimension of the subspace of $M_{n n}$ consisting of all diagonal $n \times n$ matrices. Motivate your answer clearly.

Question 3
Let $S=\left\{\bar{e}_{1}, \bar{e}_{2}\right\}$ be the standard basis for \mathbb{R}^{2}, and let $B=\left\{\bar{v}_{1}, \bar{v}_{2}\right\}$ be the basis that results when the vectors in S are rotated counter-clockwise by an angle of θ radians.
(a) Find the transition matrix $P_{B \rightarrow S}$.
(b) Let $P=P_{B \rightarrow S}$ and show that $P^{T}=P_{S \rightarrow B}$.

Question 4
Let

$$
A=\left[\begin{array}{cc}
3 & -1 \\
-8 & 3
\end{array}\right]
$$

(a) Express A as a product of elementary matrices, and then describe the geometric effect of multiplying by A in \mathbb{R}^{2} in terms of shears, compressions, expansions and reflections.
(b) What is the rank of A ? Explain.

Prove or disprove: If A is a 3×3 diagonalizable matrix with (not necessarily distinct) eigenvalues λ_{1}, λ_{2} and λ_{3}, then $\operatorname{tr}(A)=\lambda_{1}+\lambda_{2}+\lambda_{3}$.

Question 6

$$
\mathbf{u}=(3 i, 2+i, i) \text { and } \mathbf{v}=(2 i, 1+3 i, k)
$$

Question 7
Consider the linear differential equation $y^{\prime \prime}-y^{\prime}-2 y=0$
(a) Show that the substitution $y_{1}=y$ and $y_{2}=y^{\prime}$ lead to the system
$y_{1}^{\prime}=y_{2}$
$y_{2}^{\prime}=2 y_{1}+y_{2}$
(b) Solve the system obtained in (a).
(c) Use the result obtained in (b) to solve the original linear differential equation.

Question 8
$\overline{\text { Let } \mathcal{C}[-1,1]}$ be the vector space of continuous functions over the interval $[-1,1]$. Assume that $\mathcal{C}[-1,1]$ has the following inner product

$$
\langle\bar{f}, \bar{g}\rangle=\int_{-1}^{1} f(x) g(x) d x
$$

Let $\bar{f}=f(x)=x^{2}-x$ and $\bar{g}=g(x)=x+1$. Find the cosine of the angle between \bar{f} and \bar{g}.

Question 9
Let $\bar{u}=(1,-6,1), \bar{v}_{1}=(-1,2,1)$ and $\bar{v}_{2}=(2,2,4)$.
Find the orthogonal projection of \bar{u} on the subspace of \mathbb{R}^{3} spanned by vectors \bar{v}_{1} and \bar{v}_{2}.

Question 10
Let $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$. Find a QR-decomposition of A

Question 11
Let $A=\left[\begin{array}{cc}3 & -i \\ i & 3\end{array}\right]$. Find a unitary matrix P that diagonalizes the matrix A.

