UNIVERSITY OF JOHANNESBURG

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS

MAT0AB2/MATEAB2

ENGINEERING MATHEMATICS 0AB2/2B2

EXAM

11 NOVEMBER 2019

EXAMINERS:

INTERNAL MODERATOR: TIME: **120** MINUTES Dr. J. Mba Dr. F. Schulz Dr. E. Joubert **50** MARKS

SURNAME AND INITIALS:_____

STUDENT NUMBER:____

Tel No.: _____

INSTRUCTIONS:

- 1. The paper consists of **11** printed pages, **excluding** the front page.
- 2. Answer all questions.

3. Write out all calculations (steps) and motivate all answers.

- 4. Read the questions carefully.
- 5. Questions are to be answered on the question paper in the space provided. Please indicate when the blank side of a page is used.

6. No calculators are allowed.

7. Good luck!

Question 1

[12]Determine whether the following statements are TRUE or FALSE. Motivate the statement if TRUE; provide a counterexample if FALSE.

(a) The only $n \times n$ matrix A such that rank(A) = n is the identity matrix. (2)

TRUE	
FALSE	

(b) If $T : \mathbb{R}^n \to \mathbb{R}^n$ is a linear transformation and $\ker(T) = \{\overline{0}\}$, then [T] is invertible. (2)TRUE FALSE

(c) Suppose that $\{\overline{x}, \overline{y}\}$ is a set of linearly independent eigenvectors of A. Then $\overline{x} + \overline{y}$ is also an eigenvector of A. (2)

TRUE	
FALSE	

(d) If \overline{u} and \overline{v} are vectors in W^{\perp} , then $\overline{u} + \overline{v} \in W^{\perp}$.

TRUE	
FALSE	

(e) If A is a $n \times n$ matrix with $det(A) \neq 0$, then A has a QR-decomposition. (2) TRUE FALSE

(f) If $A\overline{x} = \overline{b}$ is an inconsistent linear system, then $A^T A\overline{x} = A^T \overline{b}$ is also inconsistent. (2) TRUE FALSE

(2)

MAT0AB2/MATEAB2

 $\frac{\text{Question 2}}{\text{Find the dimension of the subspace of } M_{nn} \text{ consisting of all diagonal } n \times n \text{ matrices. Motivate}}$ [3] your answer clearly.

Question 3 Let $S = \{\overline{e}_1, \overline{e}_2\}$ be the standard basis for \mathbb{R}^2 , and let $B = \{\overline{v}_1, \overline{v}_2\}$ be the basis that results when the vectors in S are rotated counter-clockwise by an angle of θ radians.

(a) Find the transition matrix $P_{B\to S}$.

(b) Let $P = P_{B \to S}$ and show that $P^T = P_{S \to B}$.

(3)

(2)

 $\frac{\text{Question } 4}{\text{Let}}$

5/11

 $A = \begin{bmatrix} 3 & -1 \\ -8 & 3 \end{bmatrix}.$

(a) Express A as a product of elementary matrices, and then describe the geometric effect of multiplying by A in \mathbb{R}^2 in terms of shears, compressions, expansions and reflections. (4)

(b) What is the rank of A? Explain.

(1)

[3]

Question 5

Prove or disprove: If A is a 3×3 diagonalizable matrix with (not necessarily distinct) eigenvalues λ_1 , λ_2 and λ_3 , then $tr(A) = \lambda_1 + \lambda_2 + \lambda_3$.

[3]

Question 6 Find all complex scalars k, if any, for which **u** and **v** are orthogonal in \mathbb{C}^3 if

 $\mathbf{u} = (3i, 2+i, i)$ and $\mathbf{v} = (2i, 1+3i, k)$.

 $\frac{\text{Question 7}}{\text{Consider the linear differential equation } y'' - y' - 2y = 0}$ [6]

(a) Show that the substitution $y_1 = y$ and $y_2 = y'$ lead to the system (2) $y'_1 = y_2$ $y'_2 = 2y_1 + y_2$ (b) Solve the system obtained in (a).

(3)

(c) Use the result obtained in (b) to solve the original linear differential equation. (1)

Let C[-1,1] be the vector space of continuous functions over the interval [-1,1]. Assume that C[-1,1] has the following inner product

$$\langle \overline{f}, \overline{g} \rangle = \int_{-1}^{1} f(x)g(x) \, dx$$

Let $\overline{f} = f(x) = x^2 - x$ and $\overline{g} = g(x) = x + 1$. Find the cosine of the angle between \overline{f} and \overline{g} .

Question 9 Let $\overline{u} = (1, -6, 1)$, $\overline{v}_1 = (-1, 2, 1)$ and $\overline{v}_2 = (2, 2, 4)$. Find the orthogonal projection of \overline{u} on the subspace of \mathbb{R}^3 spanned by vectors \overline{v}_1 and \overline{v}_2 . [3]

[5]

$$\frac{\text{Question 10}}{\text{Let }A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}}.$$
 Find a QR-decomposition of A

[3]

 $\frac{\text{Question 11}}{\text{Let }A = \begin{bmatrix} 3 & -i \\ i & 3 \end{bmatrix}}.$ Find a unitary matrix *P* that diagonalizes the matrix *A*.