UNIVERSITY

FACULTY OF SCIENCE

```
DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS
MODULE MAFT0B2/MA2BFET
MATHEMATICS 2B FOR TEACHERS
CAMPUS APK
ASSESSMENT SUPPLEMENTARY EXAM
```

DATE JANUARY 2020

ASSESSOR(S)

MODERATOR

DURATION 120 MINUTES

TIME TBA

MR T. MUDZIIRI SHUMBA

MS S. RICHARDSON

MARKS 80

SURNAME AND INITIALS \qquad

STUDENT NUMBER \qquad

CONTACT NUMBER \qquad

NUMBER OF PAGES: $1+11$ PAGES
INSTRUCTIONS:

1. ANSWER ALL THE QUESTIONS ON THE PAPER IN PEN.
2. CALCULATORS ARE NOT ALLOWED.
3. SHOW ALL CALCULATIONS AND MOTIVATE ALL ANSWERS.
4. IF YOU REQUIRE EXTRA SPACE, CONTINUE ON THE FACING BLANK PAGE AND INDICATE THIS CLEARLY.

Question 1 [7marks]

For questions $1.1-1.4$, choose one correct answer, and make a cross (X) in the correct block.

Question	A	B	C	D	E
1.1					
1.2					
1.3					
1.4					

1.1 Let f be a function defined on an interval $D=[a, b]$, and let $I \subset D$ be a sub-interval. Suppose that for all $x \in I, f(x) \leq f\left(c_{0}\right)$ where $c_{0} \in I$ and for some $c \in(a, b), f(x) \leq f(c)$ for all $x \in D$. Which of the following statements is not correct?
(A) $f\left(c_{0}\right)$ is a local maximum of f
(B) $f\left(c_{0}\right)$ is an absolute maximum of f
(C) $f(c)$ is an absolute maximum of f
(D) $f(c)$ is a local maximum of f
(E) None of the above are incorrect.
1.2 The inflection point of the function $f(x)=x e^{-3 x}$ is at $x=$?
(A) $\frac{1}{3}$
(B) 3
(C) $\frac{2}{3}$
(D) 0
(E) None of the above.
1.3 Let f be the function defined by $f(x)=\frac{1}{2} \ln \left|x^{2}-1\right|$. Which of the following statements is incorrect?
(a) $x=0$ is a critical number of f.
(b) $x=1$ is a critical number of f.
(c) $x=-1$ is not a critical number of f.
(d) $x=0$ is a turning point of f.
(e) None of the above.
1.4 Given that $f(0)=-1, f^{\prime}(0)=-2, g(0)=-3$ and $g^{\prime}(0)=4$, the slope of the tangent line to the curve $y=\frac{f(x)}{(g(x)+2)}$ at $x=0$ is:
(A) -2 .
(B) 1 .
(C) 6 .
(D) -6 .
(E) None of the above.

Question 2 [7marks]
(a) State the domain of the function

$$
h(t)=\frac{2}{3 t-3} .
$$

(b) Give the domain of the function $g(x)=\frac{1}{\sqrt{x^{2}-25}}$.
(c) State whether the given statement is true or false, justifying your answer:

$$
\frac{d^{2} y}{d x^{2}}=\left(\frac{d y}{d x}\right)^{2}
$$

(d) Indicate, with justification, whether the following statement is true or false:

$$
\frac{d}{d x}[f(g(x))]=f^{\prime}(x) g^{\prime}(x) .
$$

(e) Find all the critical values of the function $g(x)=2 \sin x+\cos ^{2} x$.

Question 3 [12 marks]
3.1 Let

$$
F(x)=\frac{x^{3}-1}{|x-1|}
$$

(a) Evaluate the following limits:
(i)

$$
\lim _{x \rightarrow 1^{-}} F(x) .
$$

(ii)

$$
\lim _{x \rightarrow 1^{+}} F(x) .
$$

(iii)

$$
\lim _{x \rightarrow 1} F(x) .
$$

(b) Is the function F differentiable at $x=1$? Explain your answer.
3.2 Let

$$
f(x)= \begin{cases}x^{2}+1 & \text { if } x<0 \\ x & \text { if } 0 \leq x<2, \\ x-1 & \text { if } x \geq 2\end{cases}
$$

Sketch the graph of the function indicating all the important points.

Question 4 [5 marks]
Sketch the graph of a function g defined on $\left\{x \mid x^{2}-1 \neq 0\right\}$ which satisfies the following conditions:
(i) $g(0)=0,0=g(x)$ only if $x=0$.
(ii) $g(-x)=g(x)$.
(iii)

$$
\begin{array}{ll}
\lim _{x \rightarrow 1^{-}} g(x)=-\infty, & \lim _{x \rightarrow 1^{+}} g(x)=\infty \\
\lim _{x \rightarrow-1^{-}} g(x)=\infty, & \lim _{x \rightarrow-1^{+}} g(x)=-\infty \\
\lim _{x \rightarrow \pm \infty} g(x)=2 &
\end{array}
$$

(iv) $g^{\prime}(0)=0$.
(v) g is increasing on $(-\infty, 0)$, and decreasing elsewhere.
(vi) g is concave upward on $(-\infty,-1)$ and $(1, \infty)$, while it is concave downward on $(-1,1)$.

Question 5 [11 marks]
5.1 Find y^{\prime} given that $x^{2} \cos y+\sin 2 y=x y$.
5.2 Find $\frac{d y}{d x}$ if $y=\sqrt{1+4 \sin x}$.
5.3 Find an equation of the tangent line and the normal line to the curve $y=\sqrt{1+4 \sin x}$ at the point $(0,1)$.

Question 6 [9 marks]
6.1 Let $f(x)=x^{3}+5 x+4$. Find $f^{\prime}(x)$ from first principles, that is, using the definition of the derivative.
6.2 Given that $y=\sin (\sqrt{\cos 2 x})$, find y^{\prime}.
6.3 Show that

$$
\frac{d}{d x}\left(\sec ^{2} x\right)=\frac{d}{d x}\left(\tan ^{2} x\right)
$$

Question 7 [13 marks] Let

$$
f(x)=\frac{x^{2}}{\sqrt{x^{4}-1}}
$$

7.1 Check algebraically if the function f is even, odd or neither.
7.2 Identify all possible vertical asymptotes for f showing clearly calculations verifying your answer.
7.3 Find all possible horizontal asymptotes for f. Show clear calculations to verify your result. 4
7.4 Consider the function $f(x)=x^{4}-2 x^{2}+3$. At which intervals is the function increasing or decreasing? Characterise all the turning points of the function.

Question 8 [9 marks]
8.1 Evaluate the following limit:

$$
\lim _{x \rightarrow 0} \frac{\tan 4 x}{\sin 3 x}
$$

8.2 Given that $f^{\prime \prime}(\theta)=\sin \theta-\cos \theta, f(0)=3, f^{\prime}(0)=4$, find f.

Question 9 [7marks]
The the surface area of a cube is increasing at the rate of $\frac{4}{3} \mathrm{~cm}^{2} / \mathrm{min}$. How fast is the volume increasing when the length of an edge is 30 cm ?

