UNIVERSITY
IOHANNESBURG

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS MODULE MAFT0B2/MA2BFET MATHEMATICS 2B FOR TEACHERS CAMPUS ASSESSMENT APK EXAM DATE 26/11/2019 TIME 16:30 ASSESSOR(S) MR T. MUDZIIRI SHUMBA MODERATOR MS S. RICHARDSON DURATION 120 MINUTES MARKS 80

SURNAME AND INITIALS \qquad

STUDENT NUMBER \qquad

CONTACT NUMBER \qquad

NUMBER OF PAGES: $1+10$ PAGES
INSTRUCTIONS:

1. ANSWER ALL THE QUESTIONS ON THE PAPER IN PEN.
2. CALCULATORS ARE NOT ALLOWED.
3. SHOW ALL CALCULATIONS AND MOTIVATE ALL ANSWERS.
4. IF YOU REQUIRE EXTRA SPACE, CONTINUE ON THE FACING BLANK PAGE AND INDICATE THIS CLEARLY.

Question 1 [7marks]
For questions 1.1 - 1.4, choose one correct answer, and make a cross (X) in the correct block.

Question	A	B	C	D	E
1.1					
1.2					
1.3					
1.4					

1.1 Suppose that

$$
\lim _{x \rightarrow 2^{+}} f(x)=4
$$

If $\lim _{x \rightarrow 2} f(x)$ exists, to what value does it converge?
(A) 2
(B) -2
(C) 4
(D) -4
(E) None of the above.
1.2 Consider the function given by

$$
f(x)= \begin{cases}1 & \text { if } x<-1 \\ x & \text { if }-1 \leq x<1 \\ (x+1)^{2} & \text { if } x \geq 1\end{cases}
$$

At what value(s) of x is the function discontinuous?
(A) -1 only.
(B) -1 and 1 .
(C) 1 only.
(D) 0 and 1 .
(E) None of the above.
1.3 Let $f(x)=4 \sqrt{x}$. The value of c such that the conclusion of the mean value theorem is satisfied on the interval $[0,25]$ is:
(A) 25
(B) $\frac{25}{4}$
(C) $\frac{1}{5}$
(D) 4
(E) None of the above.
1.4 Given that $f(0)=-1, f^{\prime}(0)=-2, g(0)=-3$ and $g^{\prime}(0)=4$, the slope of the tangent line to the curve $y=f(x)(g(x)+2)$ at $x=0$ is:
(A) -2 .
(B) 1 .
(C) 6 .
(D) -6 .
(E) None of the above.

Question 2 [7 marks]
(a) State the domain of the function

$$
h(t)=\frac{2}{3 t+2} .
$$

(b) Give the domain of the function $g(x)=\sqrt{x^{2}-25}$.
(c) State whether the given statement is true or false, justifying your answer:

$$
\frac{d^{2} y}{d x^{2}}=\left(\frac{d y}{d x}\right)^{2}
$$

(d) Indicate, with justification, whether the following statement is true or false:

$$
\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) g^{\prime}(x) .
$$

(e) Find all the intercepts of the graph of the function $y=2+2 \tan x, 0 \leq x \leq 2 \pi$.

Question 3 [12 marks]
3.1 Let

$$
F(x)=\frac{x^{3}+1}{|x+1|}
$$

(a) Evaluate the following limits:
(i)

$$
\lim _{x \rightarrow-1^{-}} F(x) .
$$

(ii)

$$
\lim _{x \rightarrow-1^{+}} F(x) .
$$

(iii)

$$
\lim _{x \rightarrow-1} F(x) .
$$

(b) Is the function F differentiable at $x=-1$? Explain your answer.
3.2 Let

$$
f(x)= \begin{cases}x^{2}+2 & \text { if } x<0 \\ x & \text { if } 0 \leq x<2, \\ x-2 & \text { if } x \geq 2\end{cases}
$$

Sketch the graph of the function indicating all the important points.

Question 4 [5 marks]
Sketch the graph of a function g defined on $\left(-\frac{1}{2} \pi, \frac{1}{2} \pi\right)$ which satisfies the following conditions:
(i) $g(0)=0$.
(ii) $g(-x)=g(x)$.
(iii)

$$
\lim _{x \rightarrow \frac{\pi^{-}}{}-} g(x)=\infty
$$

(iv)

$$
\lim _{x \rightarrow-\frac{\pi^{+}}{}} g(x)=\infty .
$$

(v) $g^{\prime}(0)=0$.
(vi) g is increasing on $\left(0, \frac{1}{2} \pi\right)$.
(vii) g is concave upward on $\left(0, \frac{1}{2} \pi\right)$.

Question 5 [11 marks]

Given that $x^{2}+x y-4 y=2$,
5.1 Use implicit differentiation to find $\frac{d y}{d x}$.
5.2 Rewrite y explicitly as a function of x and hence find $\frac{d y}{d x}$.
5.3 Using your answers to the first and second part, find the equation of the normal line to the curve given by the equation at $x=2$.

Question 6 [9 marks]
6.1 Find the derivative of the function $y=x^{4} \tan \left(2 x^{2}\right)$
6.2 Given that $y=\sin (\sqrt{\cos x})$, find y^{\prime}.
6.3 Show that

$$
\frac{d}{d x}(\sec x)=\sec x \tan x
$$

Question 7 [13 marks] Let

$$
f(x)=\frac{x^{2}}{x^{2}-1}
$$

7.1 Check algebraically if the function f is even, odd or neither.
7.2 Identify all possible vertical asymptotes for f showing clearly calculations verifying your answer.
7.3 Find all possible horizontal asymptotes for f. Show clear calculations to verify your result. 4
7.4 Consider the function $f(x)=x^{4}-2 x^{2}+3$. Find all the intervals of concavity, and discuss concavity in these intervals. Identify all possible inflection points.

Question 8 [9 marks]
8.1 Evaluate the following limit:

$$
\lim _{x \rightarrow 0} \frac{\sin 3 x}{\tan 4 x}
$$

8.2 Given that $f^{\prime \prime}(\theta)=\sin \theta+\cos \theta, f(0)=3, f^{\prime}(0)=4$, find f.

Question 9 [7 marks]
Find the maximum area of a rectangle that can be inscribed in a semicircle of radius r.

