
1 - 6

UNIVERSITY OF JOHANNESBURG

FACULTY OF SCIENCE

ACADEMY OF COMPUTER SCIENCE AND SOFTWARE ENGINEERING

MODULE
IT08X37

SYSTEMS PROGRAMMING

CAMPUS APK

EXAM SSA JANURARY 2019

DATE 2019-01-07 SESSION

ASSESSOR MR D COTTERRELL

MODERATOR PROFESSOR BL TAIT

 MARKS 100

INSTRUCTIONS

Please read the following instructions carefully:

1. Make sure that your project is burnt to CD and uploaded to EVE before the

presentation starts.

2. Present all aspects of your practical project.

3. Clearly indicate the sources of all information used.

4. This paper consists of 6 pages (including cover page).

Student number:

ID Number:

Surname, Initials:

(Optional)

SM

EM

FM

Professor B Tait

Mr. D Cotterrell

2 - 6

Notes/Comments

3 - 6

Criteria Marks

Can be compiled and loaded as module

• Appropriate Makefile (1 marks)

o Produces .ko files for each module in solution

o Uses the currently running kernels header files automatically.

Marks should be deducted for hard coding the kernel version

information.

o Supports additional build targets such as clean

• Module parameters support (1marks)

• Device nodes are created in /dev/ (2 marks)

o If created by script using mknod

▪ Appropriate file permissions should be set to allow for

read/write access by not root users and groups.

▪ The device major/minor version numbers should be

automatically parsed from /proc/devices and set without

the need for user intervention.

o If the device is implemented as a miscellaneous char device the

device nodes will be automatically created. In this case only

award (1 mark).

o If the student has researched an alternative in-kernel mechanism

for creating the device nodes then full marks should be awarded

for research effort (2 marks).

• Device is correctly loaded into the kernel using insmod / can be queried

modprobe

(1 marks)

5

Can be compiled in kernel

• Kernel build is successfully demonstrated (3 marks)

o This does not require the kernel to be built in the presence of the

marker, but a prebuilt kernel can be booted showing the presence

/ functioning of the device without the module being listed by

lsmod.

• Process of compiling a module directly into the kernel is correctly

explained. (2 marks)

o These marks can be awarded even if the kernel build is not able

to be successfully demonstrated.

User Mode:

• If the driver is user mode, the correct instruction must be shown to see

how it has been added to the necessary registries and files in the

Operating system. (5 Marks)

5

Configuration

• Appropriate configuration options are presented to the user via make

menuconfig or other similar kernel configuration tool.

• The menu options should as a general rule correspond with the

parameters accepted by the kernel module.

5

Uses appropriate Linux device model

• The student makes appropriate use of cdev family of functionality such

as cdev_add() rather than register_chrdev(). (If register _chrdev used (3

Marks)

5

4 - 6

Initialization

• Function registered as init via module_init (1 mark)

• Device(s) are correctly registered with the system (1 mark)

• Error handling and reporting (1 mark) – Although the kernel standard is

to make use of a goto based style for error handling the Academy is

perfectly willing to accept a more structured programming based

approach which avoids gotos. As long as the code is clear and readable

avoiding spaghetti code in the first case and overly deep nesting in the

second no marks should be deducted.

• Major and or Minor numbers are dynamically assigned (2 mark)

5

Shutdown

• Function registered as exit via module_exit (1 mark)

• Device(s) are correctly de-registered with the system (1 mark)

• Error handling and reporting (1 mark)

• Appropriate messages are sent via printk with appropriate severity levels

(2 marks) – This mark applies to messages sent during initialization and

all other operations.

5

Open

• Programmer defined data structure is correctly defined according to

needs of system (2 marks).

• Memory is correctly allocated for data structure and associated with

filep->private_data (2 marks)

• Any per-reader/writer associated pre-initialization is performed

(1 mark).

5

Close

• Memory is correctly de-allocated and any per-reader/writer cleanup

performed. Special attention should be paid to ensuring that internal

dynamic data within the structure is deallocated prior to the structure to

avoid any memory leaks.

5

Read/Write

• File Operations structure instance is correctly declared and assigned the

function addresses of the implementation operation functions. (2 marks)

• Appropriate transfer of data to / from user and kernel space (1 mark)

• Support for concurrency control to support multiple readers / writers

(2 marks)

5

User space dynamic interactively

• Macros for each supported ioctl commands are correctly defined (2

marks): As a general rule there should at least be support for ioctl based

read and write as well as triggering the major functionality of the

module. Using ioctl to overshadow default or parameter based

configuration options is also acceptable.

• The ioctl operation function is correctly implemented (3 marks): A rule

the ioctl function should not actually implement the behaviors directly

but should delegate to helper functions.

5

5 - 6

ELSE – if ioctl not used

• Correct use of tools and approaches if ioctl is not applicable to driver

developed, student must be able to justify approach taken. Also, student

must show understanding of the purpose of the ioctl. (5 Marks)

Virtual File System (/proc/ or sysfs)

• Entries created in /proc/ or sysfs (2 marks)

• Read / Write support of those entries depending on nature of entry

(2 marks)

• Explanation of difference between /proc/ and sysfs (1 Mark)

5

User space program

• Supports basic read / write (2 marks)

• Supports ioctl based operations (2 marks)

• Demonstrates functionality of module (1 mark)

5

System utility

• Meets requirements of problem domain

5

System modularity

• Source code modularity (2 marks)

• Export of shared functionality via EXPORT_SYMBOL or another means

to share functionality to different module (3 marks)

5

Implementation of solution

• Depending on the approach taken in developing the module:

o The distribution of marks can be done based on the complexity of

the implementation if it is purely a software based module.

o If a hardware implementation the mark distribution will include

evaluating whether the correct technology was used along with

the corresponding libraries. (20 marks)

• For example:

o Hardware

▪ Correct operation of the device

▪ Correct choice of hardware parts and justification

o Filesystem

▪ Unique file system features

▪ Mount and unmount

o Ethernet

▪ Communication

▪ Broadcasting

▪ Multicasting

o Network tty or ttysnooper

▪ Selection of tty device

▪ Can read directly from the terminal (pine)

▪ Can write directly to the terminal (commands, pine)

▪ (Network) ttys handled

o Sound mixer

▪ Forward call system

▪ Selection of sound card

▪ Correctly listed subsystems

30

6 - 6

▪ Super sampling , subsampling

▪ Conversion format

▪ Non-block / block IO

▪ Mmap

• Does the implementation correctly handle multithreaded commands? (5

marks)

• Quality of the implementation (doesn’t reject data) (5 marks)

Total 100

