

FACULTY OF SCIENCE

DEPARTMENT OF GEOGRAPHY, ENVIRONMENTAL MANAGEMENT & ENERGY STUDIES

MODULE ENS8X05

ENERGY MODELLING

CAMPUS APK

EXAM JANUARY 2020

DATE JANUARY 2020 SESSION 08:30 – 11:30

ASSESSOR(S) DR KRISTY LANGERMAN

EXTERNAL MODERATOR DR PHILIP GOYNS

DURATION 3 HOURS MARKS 300

NUMBER OF PAGES: 3 PAGES

INSTRUCTIONS:

- 1. Please answer any THREE of the five questions below.
- 2. Each answer should be in the form of a comprehensive essay, with sketches, diagrams and calculations where these may be appropriate to enhance your answer.
- 3. Each question is worth the same number of marks (100).
- 4. Calculators are permitted.

Dr Kristy Langerman

Dr Philip Goyns

QUESTION 1

Describe the stages of setting up a mathematical model. Then construct a model to determine:

- 1. The cost of heating water for a new house using an electric geyser and using a gas water heater, over a 5-year period.
- 2. The CO₂ emissions per year associated with the electric geyser and the gas water heater.
- 3. The minimum additional CO₂ tax required to make the gas water heater a cheaper option.

Assume the following:

- a. The cost of a new gas heater (plus installation) is R10 000
- b. The cost of a new electric geyser is R3 000
- c. The gas heater uses 0.6 kg of liquid petroleum gas (LPG) per day
- d. The power rating of the electric geyser is 3 kW
- e. LPG costs R1 200 for a 48 kg bottle
- f. The electric geyser typically needs to operate for 3 hours a day to heat sufficient water
- g. Electricity costs R1.50/kWh
- h. The gas water heater and the electric geyser both have a 5-year life.
- i. The CO₂ emission factor for the South Africa electricity grid is 1.05 tons per MWh
- j. The CO₂ emission factor for LPG is 2 985 kg of CO₂ per ton of LPG
- k. Inflation and interest rates are zero

[100]

QUESTION 2

Compare and contrast top-down energy models with bottom-up energy models, and suggest applications that both types of model could be used for.

[100]

QUESTION 3

Energy models are frequently used for planning purposes. Evaluate the benefit that can be derived from the use of such models, and the limitations of a modelling approach. What trade-offs need to be considered in energy system models? How are externalities handled by models?

[100]

QUESTION 4

Answer all three parts of this question:

- Using your knowledge of Systems Thinking and Systems Dynamics, draw a causal loop diagram which shows two factors that influence the change in national electricity demand for South Africa over time.
- ii) Explain how the factors that you have identified influence the electricity demand, with reference to the causal loop diagram.
- iii) Identify the system archetype depicted in the causal loop diagram drawn for part i) of this question, and justify your answer.

[100]

QUESTION 5

Describe the modelling approach that is used for the Integrated Resource Plan, considering the inputs, output, scenarios and exclusions.

[100]

TOTAL [300]