

FACULTY OF SCIENCE

ACADEMY OF COMPUTER SCIENCE AND SOFTWARE ENGINEERING

MODULE CSC02B2/CSC2B10 COMPUTER SCIENCE 2B

CAMPUS AUCKLAND PARK CAMPUS (APK)

JANUARY EXAM 2020

DATE: 2020-01

ASSESOR(S):

SESSION: 8:00 - 10:00

PROF D.T. VAN DER HAAR MS M. FOURIE MR T. MOODLEY

MODERATOR:

DR J.L. DU TOIT

DURATION: 120 MINUTES

MARKS: 100

Please read the following instructions carefully:

- 1. Answer **all** the questions
- 2. Write *cleanly* and *legibly*.
- 3. You may use a non-programmable calculator to answer the questions.
- 4. This paper consists of 5 pages (including this page).

QUESTION 1

(a) Briefly describe <i>TDM</i> and how it works.	[02]
(b) With the increase use of IoT, networks are faced with new vulnerabilities. <i>List</i> three(3) types of attacks that networks experience.	[03]
Т	otal: 5

QUESTION 2

Assume there is a copper network with 6 nodes (N0, N1, N2, N3, N4 and N5) and the transmission rates between these nodes are as follows:

It is also determined that the distances between the nodes are as follows:

- N0-N1: 10km N2-N3: 25km N4-N5: 5km
- N1-N2: 15km N2-N4: 18km

Answer the following questions:

- (a) *Determine* the **approximate transmission rate** when communicating between N0 [01] and N5.
- (b) Taking this **approximate transmission rate** into account, how *long* (in seconds) [02] will it take to transfer a 16 MegaByte **file** from node N0 to N5?
- (c) If it is determined that the copper installed in this network propagates a signal at a speed of 60 000 km/s. *Calculate* the propagation delay for communications between N0 to N5.
- (d) Assuming that there is no nodal processing delay or queueing delay, *calculate* the [04] **total time** taken to transfer a 16 MegaByte file from from N0 to N5?

Total: 10

QUESTION 3

(a) <i>List</i> the steps that take place in the TCP three-way handshake.	[03]
(b) <i>Discuss</i> circuit-switching, along with its advantages and disadvantages.	[05]
(c) What does <i>IMAP</i> stand for?	[01]
(d) What port <i>IMAP</i> run on?	[01]
	Total: 10

QUESTION 4

(a) Briefly describe four (4) services the transport layer provides.	[04]
(b) <i>Discuss</i> how connection-less multiplexing occurs on the transport layer.	[04]
(c) <i>Describe</i> for each of the following mechanisms, which problem they address in order to achieve reliability:	[02]

- Timers
- Acknowledgments

Total: 10

QUESTION 5

The table below represents the payload of a UDP segment. Calculate the **sum** of the following two 16-bit integers, along with their associated 1s complement **checksum**:

Write down just the sum and checksum in your answer sheet

Number 1	1	0	0	1	1	0	1	0	0	1	1	1	0	0	1	0
Number 2	1	1	0	1	0	0	1	0	0	1	0	0	0	0	0	0

Total: 5

QUESTION 6

- (a) *Illustrate* how a **IPv6 header** is structured and what makes it different from IPv4. [04]
- (b) *Discuss* two (2) differences between the **Internet** (IP) and **ATM** (VC) network layer [06] protocols, along with why you think IP is used more.

Total: 10

QUESTION 7

Given the following **IP** address and **CIDR**, answer the questions that follow:

193.76.75.199/25

(a) Provide this address in binary notation.	[02]
(b) How many hosts can this network accommodate?	[02]
(c) Assuming classful addressing was used, what class does this address belong to?	[02]
(d) Calculate the network address of this block in dotted decimal notation.	[02]

(e) Calculate the **broadcast address** of this block in dotted decimal notation.

QUESTION 8

Given the below network **routing graph** (with costs), answer the following questions that follow:

- (a) What is the path with the **least cost** when communicating between N1 and N5. Is [02] this the **only** cost effective path?
- (b) Given the local datagram forwarding table for node N2 below and the destination [03] address is 196.83.37.91, which link will this packet be forwarded to? Please ensure to show all your calculations.

Destination Address range	Output Link Interface
11000100 01010011 00100101 01011***	N1
11000100 01010011 00100101 010110**	N3
11000100 01010011 00100101 010111**	N4
Otherwise	N6

Total: 5

QUESTION 9

- (a) *Name* and *describe* the three broad classes of MAC protocols within the context of [06] the **data link layer**.
- (b) **Describe** two (2) techniques used for **error detection** at the **link** layer.

Total: 10

[04]

[02]

Total: 5

QUESTION 10

- (a) Name two (2) examples of permissions that are needed to create an Android application that communicates with a Java server and why you think permissions are needed.
- (b) *Describe* the use of the **tracert** network tool.

[02]

Total: 10

QUESTION 11

Provide Java source code for a **UDP server** that runs on port 9876. When a message is received from a client, the server responds by sending an upper-case version of the message back to the client.

Total: 10

QUESTION 12

The code below illustrates a TCP client that receives a file which is then written to disk. Fill in the missing code in your answer booklet.

```
import java.io.*;
2 import java.net.*;
3
4 class TCPBinGet
5 {
    public void getfile(String address, int port, String filename,
6
       int length){
      File newFile = new File(_____(a)____[1]);
7
      FileOutputStream fos = null;
8
      Socket fileSocket = null;
9
      try{
10
        fileSocket = new Socket(____(b)____[1], port);
11
        InputStream is = ____(c) ____[1];
12
        fos = new FileOutputStream(newFile);
13
        byte[] buffer = new byte[512];
14
15
        int n = 0;
        int totalBytes = 0;
16
        while (_____(d)____[2])
17
        ſ
18
19
          n = ____(e) ____[2];
          fos.write(buffer, 0, n);
20
          fos.flush();
21
          totalBytes += n;
22
        }
23
      }
24
      catch (_____(f)____[1]) { ex.printStackTrace(); }
25
      catch (IOException ex) { ex.printStackTrace(); }
26
      finally{
27
        if(fileSocket!=null){
28
          try { _____(g) _____[1]; }
29
          catch (IOException e) { e.printStackTrace(); }
30
        }
31
        if (fos != null){
32
          try { _____(h) ____[1]; }
33
          catch (IOException e) { e.printStackTrace(); }
34
        }
35
      }
36
    }
37
38 }
```

Total: 10

The End!