UNIVERSITY
JOHANNESBURG

FACULTY OF SCIENCE

ACADEMY OF COMPUTER SCIENCE AND SOFTWARE ENGINEERING	
MODULE	CSC02B2/CSC2B10 COMPUTER SCIENCE 2B
CAMPUS	AUCKLAND PARK CAMPUS (APK)
	JANUARY EXAM 2020

DATE: 2020-01
ASSESOR(S):

MODERATOR:
DURATION: 120 MINUTES

SESSION: 8:00-10:00
PROF D.T. VAN DER HAAR MS M. FOURIE MR T. MOODLEY

DR J.L. DU TOIT
MARKS: 100

Please read the following instructions carefully:

1. Answer all the questions
2. Write cleanly and legibly.
3. You may use a non-programmable calculator to answer the questions.
4. This paper consists of 5 pages (including this page).

QUESTION 1

(a) Briefly describe TDM and how it works.
(b) With the increase use of loT, networks are faced with new vulnerabilities. List three
(3) types of attacks that networks experience.

QUESTION 2

Assume there is a copper network with 6 nodes (N0, N1, N2, N3, N4 and N5) and the transmission rates between these nodes are as follows:

1Mbps

It is also determined that the distances between the nodes are as follows:

- NO-N1: 10 km
- N2-N3: 25 km
- N4-N5: 5km
- N1-N2: 15 km
- N2-N4: 18 km

Answer the following questions:
(a) Determine the approximate transmission rate when communicating between N0 and N 5 .
(b) Taking this approximate transmission rate into account, how long (in seconds) will it take to transfer a 16 MegaByte file from node N0 to N5?
(c) If it is determined that the copper installed in this network propagates a signal at a speed of $60000 \mathrm{~km} / \mathrm{s}$. Calculate the propagation delay for communications between N0 to N5.
(d) Assuming that there is no nodal processing delay or queueing delay, calculate the total time taken to transfer a 16 MegaByte file from from N0 to N5?

QUESTION 3

(a) List the steps that take place in the TCP three-way handshake.
(b) Discuss circuit-switching, along with its advantages and disadvantages.
(c) What does IMAP stand for?
(d) What port IMAP run on?

QUESTION 4

(a) Briefly describe four (4) services the transport layer provides.
(b) Discuss how connection-less multiplexing occurs on the transport layer.
(c) Describe for each of the following mechanisms, which problem they address in order to achieve reliability:

- Timers
- Acknowledgments

QUESTION 5

The table below represents the payload of a UDP segment. Calculate the sum of the following two 16 -bit integers, along with their associated 1 s complement checksum:
Write down just the sum and checksum in your answer sheet

Number 1	1	0	0	1	1	0	1	0	0	1	1	1	0	0	1	0
Number 2	1	1	0	1	0	0	1	0	0	1	0	0	0	0	0	0

QUESTION 6

(a) Illustrate how a IPv6 header is structured and what makes it different from IPv4.
(b) Discuss two (2) differences between the Internet (IP) and ATM (VC) network layer protocols, along with why you think IP is used more.

QUESTION 7

Given the following IP address and CIDR, answer the questions that follow:
193.76.75.199/25
(a) Provide this address in binary notation.
(b) How many hosts can this network accommodate?
(c) Assuming classful addressing was used, what class does this address belong to?
(d) Calculate the network address of this block in dotted decimal notation.
(e) Calculate the broadcast address of this block in dotted decimal notation.

QUESTION 8

Given the below network routing graph (with costs), answer the following questions that follow:

(a) What is the path with the least cost when communicating between N1 and N5. Is this the only cost effective path?
(b) Given the local datagram forwarding table for node N2 below and the destination address is 196.83.37.91, which link will this packet be forwarded to? Please ensure to show all your calculations.

Destination Address range	Output Link Interface
$11000100010100110010010101011^{* * *}$	N1
$110001000101001100100101010110^{* *}$	N3
$110001000101001100100101010111^{* *}$	N4
Otherwise	N6

QUESTION 9

(a) Name and describe the three broad classes of MAC protocols within the context of the data link layer.
(b) Describe two (2) techniques used for error detection at the link layer.

QUESTION 10

(a) Name two (2) examples of permissions that are needed to create an Android application that communicates with a Java server and why you think permissions are needed.
(b) Describe the use of the tracert network tool.

QUESTION 11

Provide Java source code for a UDP server that runs on port 9876. When a message is received from a client, the server responds by sending an upper-case version of the message back to the client.

QUESTION 12

The code below illustrates a TCP client that receives a file which is then written to disk.
Fill in the missing code in your answer booklet.

```
import java.io.*;
import java.net.*;
class TCPBinGet
{
    public void getfile(String address, int port, String filename,
        int length){
        File newFile = new File(__-_-_-_(a)___-_-_-_[1]);
        FileOutputStream fos = null;
        Socket fileSocket = null;
        try{
            fileSocket = new Socket(_______(b)_______[1], port);
            InputStream is = ___-_____(c)__-_-_-_-_-_[1];
            fos = new FileOutputStream(newFile);
            byte[] buffer = new byte[512];
            int n = 0;
            int totalBytes = 0;
            while (________(d)
            {
                n = _-_-_-_-_(e) _------_-_-_ [2];
                    fos.write(buffer, 0, n);
                    fos.flush();
                    totalBytes += n;
            }
        }
        catch (___-_-_-(f)__-_-_-_-_[1]) { ex.printStackTrace(); }
        catch (IOException ex) { ex.printStackTrace(); }
        finally{
            if(fileSocket!=null){
            try { _-_-_-_(g)__-_-_-__-[1]; }
            catch (IOException e) { e.printStackTrace(); }
            }
            if (fos != null){
            try { __-__-_(h)___-_-_-_[1]; }
            catch (IOException e) { e.printStackTrace(); }
            }
        }
    }
}
```


The End!

