

FACULTY OF SCIENCE

ACADEMY OF	COMPUTER SCIENCE AND SOFTV	VARE ENGINEERING		
MODULE	CSC01B1			
CAMPUS	APK			
	NOVEMBER EXAMINATION 2019			
DATE: 2019-11-19 SESSION: 08:30 – 12				
ASSESSOR(S)		PROF DA COULTER		
INTERNAL MODERATOR	R	PROF DT VAN DER HAAR		
DURATION 2 HOURS		MARKS 100		
SURNAME, INITIALS (or ID NUMBER):				
STUDENT NUMBER:				
CONTACT NR:				

NUMBER OF PAGES: 5 PAGES

REQUIREMENTS: NON-PROGRAMMABLE CALCULATORS ARE PERMITTED

Q1	
Q2	
Q3	
Q4	
Total	

QUESTION 1

Draw the following in your answer book						
1.1	Use UML to model the following scenario: Short Learning Programmes, Certificates, and Degrees are all kinds of Qualification. All qualifications have a unique alphanumeric code, a set of entrance requirements defined as a string in the XML format. Each qualification is capable of checking those requirements but does so in its own way. The entrance requirements can be queried and set when the qualification is created but cannot be changed after that. An academic department has a set of qualifications and the ability to add and remove them. These qualifications can continue to exist independently of the department.				(5)	
	Write	the most correct o	ption in your ans	wer books		
4.0	Altering the behaviour of an existing base class' non-virtual member function in a derived class is called					
1.2	A redefining	B overriding	C inheriting	D composing	E abstract	ing
1 0	A class which cont	tains a pure virtual f	unction automat	ically becomes a	n class	
1.3	A interface	B abstract base	C exception	D embedded	E auto	
1.4	Safely implementing two-dimensional indexing via the function invocation operator "()" is simpler than double indexing "[][]"					
1.4	Tr	ue	False		無1	
15	Which keyword is preferred when introducing a type parameter during generic programming?					
1.5	A class	B template	C typename	D struct	E enum	ı
1.6	Which of the following operators can be implemented in order to support operator chaining?					
1.0	A operator>>	B operator<<	C operator==	D operator=	E A to	D
	Write yo	ur answers to the fo	ollowing in your a	answer books		
1.7	Is the concept of a abstract data type	Stack an abstract of to justify your answ	data type? Make ver.	use of the definit	ion of an	(3)
1.8	Differentiate between the concepts of overloading and overriding a function (2)			(2)		
1.9	Assume you had an unknown data structure which supported insertion and removal. The following values are inserted and then removed: A B C. What order would the returned values be in if the following data structure were used. a) Stack b) Queue				(2)	
1.10	Which object orientated concept is being described:i.A smartphone has a search engine appii.A smartphone uses its apps to answer queries for its useriii.A search engine app is a kind of app			(3)		

^[20]

¹ The Sino-Japanese ideogram Wu/Mu in this case represents a question which is flawed.

QUESTION 2

```
Write your answers to the following in your answer books
    #ifndef DATASET H
    #define DATASET_H
    finclude <iostream>
    using namespace std;
     (a) StatusCode
    ł
        SUCCESS,
        ERROR RANGE
    };
    (b)
            < (c)
                      T>
    class DataSet
    (d)
          :
        DataSet();
        DataSet(int intLength);
                                 objOriginal);
        DataSet(
                        (e)
        ///o1 = o2 = o3
        DataSet<T>& operator=(const DataSet<T>& objRHS);
         ///cout << o1 << endl << o2 << endl
               ostream& operator << (ostream& sLHS, const DataSet <T1>& objRHS);
        (f)
         ///T value = o[i] or o[i] = value
        (g) operator[](int intIndex);
                                                                               (10)
2.1
        int getLength() const;
         static const int MAX LENGTH = 100000000;
         static const int MIN LENGTH = 1;
         static const int DEFAULT_LENGTH = 10;
       (h) DataSet();
    private:
        void enforceRange(int intValue, int intMin, int intMax) const;
        void setup(int intLength);
        void freeState();
         void copyState(const DataSet<T>& objOriginal);
         (i) _data;
        int length;
    };
       (i)
              "DataSet.imp"
    #endif // DATASET H
```


QUESTION 3

In your answer books please write the necessary C++ code for the following statements, and answer the remaining questions. Unless otherwise indicated you may assume that the necessary header files		
are i	ncluded. Most of the marks in this section are awarded for the file handling operations	
	The text file fleet-telemetry.txt is made up of lines in the following format:	
	EPOCHTIME LICENSE LAT LONG ODO SPEED FUEL EOL	
3.1	Where EPOCHTIME is an integer depicting the number of seconds since 1 January 1970. LAT and LONG are real numbers indicating the location of a vehicle in the fleet. LICENCE is the registration number of the vehicle as a whitespace-free string. ODO and FUEL are integers depicting the distance travelled and fuel reserve percentage of the vehicle respectively. EOL is the system's representation of the end of the line.	(5)
	Write code for a function which finds and prints the licence numbers of all vehicles with fuel levels below 25% after a given epoch time. Please show code for the opening / closing of the file.	

3.2	Define a structure with alignment packing/padding disabled to represent the data for one Vehicle. You may assume that licence numbers are exactly 8 characters long and contain no spaces, and that you need as much precision as possible to store real numbers.	(5)
3.3	Assume that the file fleet-telemetry.dat is a pre-existing binary file of homogenous records of the type defined in question 3.2. Write code for a function which accesses a particular record by its index. Please show code for the opening / closing of the file.	(5)
3.4	Assume that the file fleet-telemetry.dat is a pre-existing binary file of homogenous records of the type defined in question 3.2. Write code for a function which searches for a vehicle by its licence registration number and returns that record. You may reuse your function from question 3.3.	(5)
3.5	<pre>Consider the following code which duplicates the state of objects of the class given in from question 2.1. Analyse the above code asymptotically using Big-O notation. State any assumptions made. template <typename t=""> void DataSet<t>::copyState(const DataSet<t>& objOriginal) { setup(objOriginallength); for(int i = 0; i < _length; i++) { _data[i] = objOriginaldata[i]; } }</t></t></typename></pre>	(10)

[30]

QUESTION 4

In order to manage the fleet from question 3 you have to create a Dynamic Link Library to help calculate the Euclidean distance between two vehicles. For your convenience the latitude and longitude are already converted into x and y grid coordinates:

double distance(double x1, double y1, double x2, double y2);			
4.1	Provide code for implementing this library (both the header and cpp file)	(10)	
4.2	Provide the contents of a comprehensive batch file which will compile this DLL for future use.	(10)	

[20]