

FACULTY OF SCIENCE

DEPARTMENT OF CHEMICAL SCIENCES NATIONAL DIPLOMA: ANALYTICAL CHEMISTRY

MODULE: CETXTB1 CHEMISTRY 1

CAMPUS: DFC

SUPPLEMANTARY EXAMINATION 2019

DATE: 08/01/2020

ASSESSOR:

INTERNAL MODERATOR:

DURATION: 150 MINUTES

SESSION: 08:00 - 11:00

PROF OA AROTIBA

Dr D NKOSI

MARKS: 100

NUMBER OF PAGES:

5

- INSTRUCTIONS: **ANSWER ALL QUESTIONS IN PEN. GIVE ALL NUMERICAL ANSWERS** TO THE CORRECT NUMBER OF SIGNIFICANT FIGURES AND WITH **APPROPRIATE UNITS.**
- **REQUIREMENTS: ANSWER SCRIPT**

QUESTION 1

- 1.1 In a reaction, O_2 is produced at STP, and it occupied a container that has length, width and height of 0.400 m, 0.400 m and 0.500 m respectively. How many molecules of O_2 were produced in the reaction? [1 m = 10 dm; 1 dm³ = 1 L]
- 1.2 A 0.2417 g sample of a compound composed of C,H,O,Cl only, is burned in oxygen yielding 0.4964 g of CO₂ and 0.0846 g of H₂O. A separate 0.1696 g sample of the compound is fused with sodium metal, the products dissolved in water and the chloride quantitatively precipitated with AgNO₃ to yield 0.1891 g of AgCl. What is the empirical formula for the compound?
- 1.3 A mass of 34.0 g of aluminium reacts with 39.0 g of chlorine gas to form aluminium chloride.
- 1.3.1What is the mass of aluminium chloride produced in this reaction?(5)1.3.2What mass of the reactant is left after the completion of this reaction(2)
- 1.4 Give four reasons why actual yield is usually less than theoretical yield. (4)
- 1.5 A mass of 950.0 g of copper(II) sulfate was reacted with 460.0 g of zinc metal. If 295.8 g of copper are actually obtained from this reaction, what is the percent yield?
- 1.6 Chalk is an almost pure form of calcium carbonate. A 20.0 g mass of chalk was reacted with an excess of dilute hydrochloric acid to produce calcium chloride, water and 4.256 L of carbon dioxide gas which was collected at standard temperature and pressure (STP).
- 1.6.1Write a balanced equation for this reaction.(2)1.6.2What mass in grammes of carbon dioxide is produced?(2)1.6.3Calculate the percentage purity of the chalk.(4)

[41]

(3)

(3)

QUESTION 2

2.1 Phenylacetic acid (C₆H₅CH₂COOH, denoted as HPAc) builds up in the blood of people afflicted with phenylketonuria, an inherited genetic disorder that, if left untreated, causes mental retardation and death. A study of the acid shows that the pH of a 0.12 M solution of HPAc is 2.60. This dissociation equation is given as:

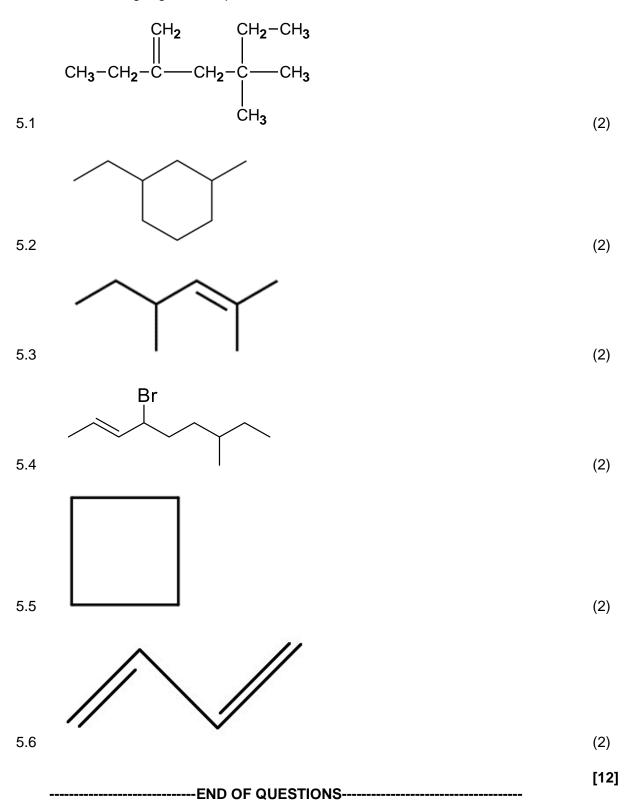
 $HPAc(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + PAc^-(aq)$

- 2.1.1 Calculate the percentage ionisation of this weak acid.
- 2.1.2 What is the K_a of phenylacetic acid?

(6)

(11)

(5)


2.2	Calculate the molarity of a household ammonia whose pH is 11.5. The dissociation constant (K_b) for ammonia at room temperature is 1.8 x 10 ⁻⁵ .	(6)					
2.3	Calculate the pH of a sodium hydroxide solution which was prepared by dissolving 2.50 g of sodium hydroxide pellet in 250 mL of water						
		[17]					
QUES	TION 3						
3.1	Draw a suitable Lewis structure for CH_3NO_2 . All hydrogens are bonded to carbon, and the order of atomic connections is CONO.						
3.2	Based on the Valence Shell Electron Pair Repulsion (VSEPR) Theory? What is the shape of the following molecules?						
3.2.1 3.2.2 3.2.3	BF ₃ CCl ₄ NH ₃	(2) (2) (2)					
3.3	Based on the VSEPR model, water is a linear molecule. True or False? Defend your choice with suitable explanation(s).	(3)					
		[12]					
QUES	TION 4						
4.1	Predict the product of the following displacement reaction (if any) by writing a balanced chemical equation.						
4.1.1	$Zn(s) + Al_2(NO_3)_3(aq) \rightarrow$	(3)					
4.1.2	$Sn(s) + HCl(aq) \rightarrow$	(3)					
4.2	What is effective nuclear charge?	(2)					
4.3	Rank the following elements in order of increasing (smallest to largest) atomic radii						
4.3.1 4.3.2 4.3.3	C, N, Mg, Al, and Si Li, Na, K, Rb, and Cs Si, P, S, Cl, and Ar	(2) (2) (2)					

 $\begin{array}{ll} c. \ Mg(g) \rightarrow Mg^{\scriptscriptstyle +}(g) \ + \ e^{\scriptscriptstyle -} \\ d. \ Mg^{\scriptscriptstyle +}(g) \rightarrow Mg^{^{2+}}(g) \ + \ e^{\scriptscriptstyle -} \end{array}$

[19]

QUESTION 5

Name the following organic compounds:

DATA SHEET

1 mole of a gas at STP = 22.4 L

Periodic Table

1 H 1.0079	Atomic Number 2 He		2 He 4.0026
³ Li ⁴ Be	4.0026 Atomic Weight	$\begin{bmatrix} 5 & 6 & 7 & 8 & 9 \\ B & C & N & O & F \end{bmatrix}$	Ne
6.941 9.0122		10.811 12.011 14.007 15.999 18.998	20.175
11 12		13 14 15 16 17	18
Na Mg 22.990 24.305		Al Si P S Cl 26.982 28.086 30.974 32.064 35.453	Ar
22.990 24.305 19 20	21 22 23 24 25 26 27 28 29 30	26.982 28.086 30.974 32.064 35.453 31 32 33 34 35 8	39.948 86
K Ca	Sc Ti V Cr Mn Fe Co Ni Cu Zn	Ga Ge As Se Br	Kr
39.098 40.078	44.956 47.88 50.942 51.996 54.938 55.847 58.933 58.69 63.546 65.39		83.86
37 38 Dh C m	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49 50 51 52 53 5 La Ca Ch Ta L	54
Rb Sr 85.47 87.62	Y Zr Nb Mo 7c (98) Ru 101.07 Rh Pd Ag Cd 112.41	In Sn Sb Te I	Xe 131.29
55 56	57 72 73 74 75 76 77 78 79 80	81 82 83 84 85 8	86
Cs Ba 132.91 137.33	La Hf Ta W Re Os Ir Pt Au Hg 138.91 178.49 180.95 183.85 186.2 190.2 192.22 195.08 196.97 200.59	Tl Pb Bi Po At 204.38 207.2 208.98 (209) (210)	Rn (222)
87 88	89		
Fr Ra (223) 226.03	Ac 227.03		

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.12	140.91	144.24	146.92	150.36	151.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.04	231.04	238.03	237.05	(244)	(234)	(247)	247	(251)	(252)	(257)	(258)	(259)	(260)