

FACULTY OF SCIENCE

DEPARTMENT OF CHEMICAL SCIENCES NATIONAL DIPLOMA: ANALYTICAL CHEMISTRY

MODULE: CETXTB1 CHEMISTRY 1

CAMPUS: DFC

NOVEMBER EXAMINATION 2019

DATE: 19/11/2019

ASSESSOR:

INTERNAL MODERATOR:

DURATION: 170 MINUTES

NUMBER OF PAGES:

Dr D NKOSI

PROF OA AROTIBA

SESSION: 12:30

MARKS: 110

5

INSTRUCTIONS: ANSWER ALL QUESTIONS IN PEN. GIVE ALL NUMERICAL ANSWERS TO THE CORRECT NUMBER OF SIGNIFICANT FIGURES AND WITH APPROPRIATE UNITS. SHOW ALL CALCULATIONS.

REQUIREMENTS: ANSWER SCRIPT

QUESTION 1

1.1	In a reaction, CO_2 is produced at standard temparature and pressure (STP), and it occupied a container that has length, width and height of 0.500 m, 0.500 m and 0.500 m respectively. How many molecules of CO_2 were produced in the reaction? [1 m = 10 dm; 1 dm ³ = 1 L; 1 mole of a gas at STP = 22.4 L]	(6)					
1.2	The combustion of 1.38 g of a compound which contains C, H, O and N yields 1.72 g of CO_2 and 1.18 g of H_2O . Another sample of the compound with a mass of 22.34 g is found to contain 6.75 g of O. What is the empirical formula of the compound?	(11)					
1.3	Ammonia (NH ₃) and oxygen gas combine to form nitrogen monoxide (NO) and water by the chemical reaction:						
	$NH_3(g) + O_2(g) \rightarrow NO(g) + H_2O(I)$ (Unbalanced)						
	If 80 g of ammonia are reacted with 100 g of oxygen						
1.3.1 1.3.2	Identify the limiting reagent (show your calculation). How many grams of the excess reacting reagent remains at completion of	(4)					
1.3.3	the reaction? If the amount of NO produced was 50 g, calculate the percentage yield.	(4) (4)					
1.3.4							
1.4	An impure sample of NaCl, which weighed 0.50 g, gave on treatment with excess of $AgNO_3$ solution, 0.90 g of AgCl as precipitate. Calculate the percentage purity of the sample.	(5)					
		[38]					
QUES	STION 2						
2.1	Define an acid according to Brønsted and Lowry.	(2)					
2.2	What is the difference between a strong acid and a concentrated acid?	(4)					
2.3	In an art restoration project, a conservator prepares copper-plate etching solutions by diluting concentrated HNO ₃ to a concentration of 0.30 <i>M</i> at 25 °C. Calculate the pH , [OH ⁻], and pOH of this solution.	(6)					
2.4	Predict the net direction and whether K_c is greater or less than 1 for each of the following reactions: [Assume equal initial concentrations of all species. You may use Figure 1 (on the data sheet page) as a guide].						
2.4.1	$H_2PO_4^{-}(aq) + NH_3(aq) \xrightarrow{\longrightarrow} HPO_4^{2-}(aq) + NH_4^{+}(aq)$						

2.4.1 $H_2PO_4^{-}(aq) + NH_3(aq) \implies HPO_4^{2-}(aq) + NH_4^{+}(aq)$ 2.4.2 $H_2O(l) + HS^{-}(aq) \implies OH^{-}(aq) + H_2S(aq)$

(2)

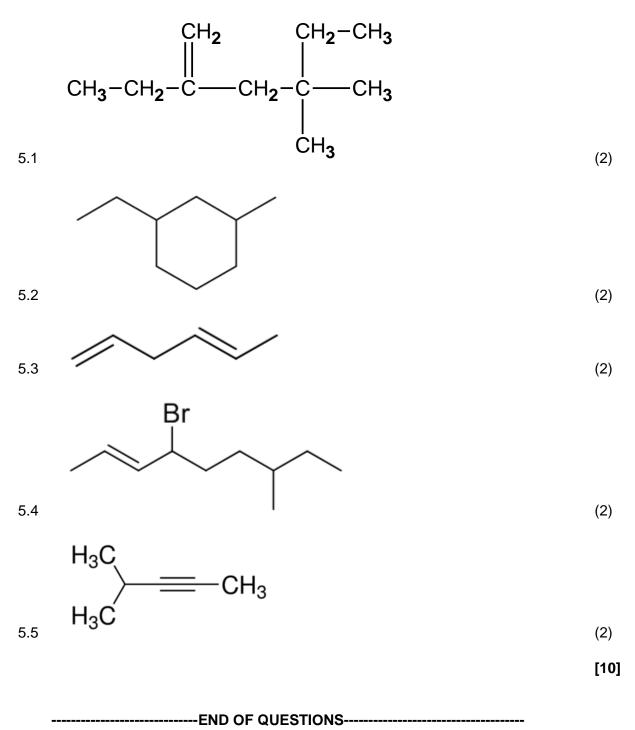
- 2.5 Propanoic acid (CH₃CH₂COOH, which we simplify as HA) is a carboxylic acid whose salts are used to retard mold growth in foods. What is the percentage dissociation of 0.10 *M* concentration of this acid? ($K_a = 1.3 \times 10^{-5}$) (7)
- 2.6 Dimethylamine, $(CH_3)_2NH$, a key intermediate in detergent manufacture, has a $K_b = 5.9 \times 10^{-4}$. What is the pH of a 1.5 *M* aqueous solution of $(CH_3)_2NH$ given the equation below:

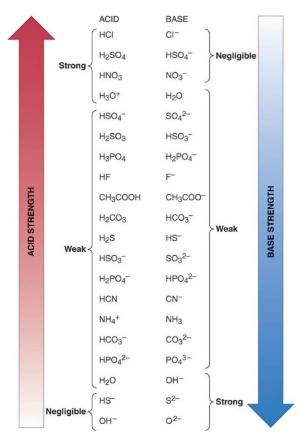
$$(CH_3)_2NH(aq) + H_2O(l) \longrightarrow (CH_3)_2NH_2^+(aq) + OH^-(aq)$$

(8) **[31]**

QUESTION 3

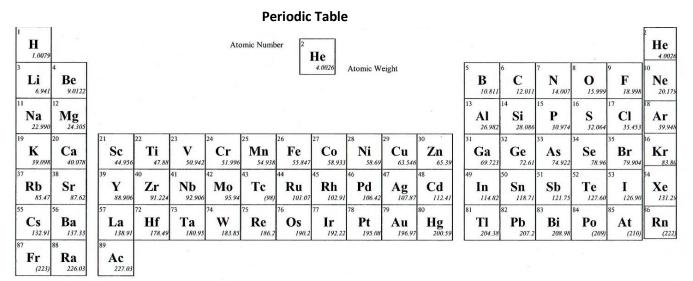
		[21]
3.5	Predict, with reason(s), whether SO ₂ is a polar or non-polar molecule.	(4)
3.4	If chlorine substitutes all the hydrogen atoms in a methane molecule, CCl ₄ (carbon tetrachloride) is formed. A singe C-Cl bond is regarded as a polar bond or a dipole, however CCl ₄ is a non-polar molecule. Explain the reason for this non-polar nature.	(4)
3.3.1 3.3.2	5 5	(2) (4)
3.3	Water is generally regarded as a universal solvent.	
3.2	The molecular geometry of ammonia is tetrahedral. However, its molecular shape is trigonal pyramidal. Explain the reason(s) behind this difference.	(4)
3.1	What is the main idea or concept behind the valence shell electron pair repulsion (VSEPR) theory?	(3)


QUESTION 4


What are the periodic trends of the following properties on the periodic table? Please explain the reason(s) for your answers.

4.1	Atomic radius	(6)
4.2	Ionisation energy	(6)
		[12]

QUESTION 5


Name the following organic compounds:

DATA SHEET

Figure 1: Strengths of conjugate acid-base pair

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.12	140.91	144.24	146.92	150.36	151.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	ND	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.04	231.04	238.03	237.05	(244)	(234)	(247)	247	(251)	(252)	(257)	(258)	(259)	(260)