$\frac{\text { UNIVERSITY }}{\text { JOHANNESBURG }}$

FACULTY OF SCIENCE

DEPARTMENT OF APPLIED CHEMISTRY
NATIONAL DIPLOMA BIOTECHNOLOGY
NATIONAL DIPLOMA FOOD TECHNOLOGY
MODULE: ANALYTICAL CHEMISTRY 2BBF: THEORY CET1BT2/CET2TB1
CAMPUS: DFC
NOVEMBER EXAMINATION

DATE: 25/11/2019
SESSION: 08:00-11:00
ASSESSOR

INTERNAL MODERATOR
DURATION 2.5 HOURS

DR M DIMPE DR M MAMO

PROF. P.N NOMNGONGO

MARKS: 125

NUMBER OF PAGES: 9 PAGES, INCLUDING A DATA SECTION AND A PERIODIC TABLE.

INSTRUCTIONS: CALCULATORS ARE PERMITTED (ONLY ONE PER STUDENT). HAND-IN QUESTION PAPER WITH THE ANSWER SHEET.

REQUIREMENTS: MULTIPLE CHOICE ANSWER SHEET.
ANSWER BOOK.

SECTION A: MULTIPLE CHOICE

Answer this section on the pink UJ MULTIPLE CHOICE ANSWER SHEET.

1. The $\% \mathrm{~T}$ of a solution with an absorbance of 0.235 is:
A. 67.4
B. 32.9
C. $\quad 45.5$
D. 58.2
2. The analytically useful half-reaction of dichromate as a strong oxidant is:
A. $\quad \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+}+9 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
B. $\quad \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{CrO}_{4}{ }^{2-}+7 \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+7 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+14 \mathrm{OH}^{-}$
3. A primary standard substance must possess all of the following characteristics, except one:
A. It must not be stable in air.
B. It must be soluble in the titration medium.
C. It must have a large molar mass to minimize weighing errors.
D. It must have a high purity.
4. Expressing $18.25 \%(\mathrm{~m} / \mathrm{m}) \mathrm{Fe}_{3} \mathrm{O}_{4}$ as $\%(\mathrm{~m} / \mathrm{m}) \mathrm{Fe}_{2} \mathrm{O}_{3}$, results in a \% (m/m) $\mathrm{Fe}_{2} \mathrm{O}_{3}$ equal to:
[Molar masses $\left(\mathrm{g} \mathrm{mol}^{-1}\right): \mathrm{Fe}_{3} \mathrm{O}_{4}=231.541 ; \mathrm{Fe}_{2} \mathrm{O}_{3}=159.694$]
A. 12.45%
B. 15.29%
C. 18.88%
D. 25.77%
5. The pH of the solution formed when 20.00 mL of a 0.234 M NaOH solution is mixed with 480.00 mL of distilled water is:
A. $\quad 13.37$
B. $\quad 12.23$
C. $\quad 11.21$
D. 11.97
6. An $\mathrm{HNO}_{2} / \mathrm{NO}^{2-}$ buffer of $\mathrm{pH}=3.25$, given that $\mathrm{K}_{\mathrm{a}}\left(\mathrm{HNO}_{2}\right)=7.1 \times 10^{-4}$, has an NO^{2-} : HNO_{2} ratio of:
A. $\quad 1.513$
B. 1.263
C. $\quad 1.632$
D. 1.824
7. Liquid chromatography is generally used for separating and determining:
A. thermally unstable and non-volatile compounds
B. thermally stable and volatile compounds
C. thermally unstable and volatile compounds
D. thermally stable and non-volatile compounds
8. The molar concentration of concentrated $48.0 \%(\mathrm{~m} / \mathrm{m}) \mathrm{HBr}$ which has an $S G=1.51$ is:
[Molar mass ($\mathrm{g} \mathrm{mol}^{-1}$): $\mathrm{HBr}=80.9$]
A. $\quad 10.1 \mathrm{M}$
B. $\quad 9.0 \mathrm{M}$
C. $\quad 8.6 \mathrm{M}$
D. $\quad 11.4 \mathrm{M}$
9. How many grams of NaOH are there in 500.00 mL of a 0.175 N NaOH solution? [Molar mass ($\mathrm{g} \mathrm{mol}^{-1}$): $\mathrm{NaOH}=40.00$]
A. $\quad 2.19 \times 10^{-3} \mathrm{~g}$
B. $\quad 114 \mathrm{~g}$
C. $\quad 3.50 \mathrm{~g}$
D. $\quad 14.0 \mathrm{~g}$
10. The following are general steps that are involved in a determination by precipitation, except for
A. Formation of a precipitate
B. Filtration of precipitate
C. Washing of precipitate
D. Digestion of precipitate
11. Which one of the following is the weakest acid?
A. $\quad \mathrm{HF}\left(\mathrm{K}_{\mathrm{a}}=6.8 \times 10^{-4}\right)$
B. $\mathrm{HClO}\left(\mathrm{K}_{\mathrm{a}}=3.0 \times 10^{-8}\right)$
C. $\mathrm{HCN}\left(\mathrm{K}_{\mathrm{a}}=4.9 \times 10^{-10}\right)$
D. Acetic acid $\left(\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}\right)$
12. What is the pH of a $0.0035 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ solution?
A. $\quad 9.04$
B. $\quad 11.54$
C. $\quad 2.46$
D. $\quad 11.85$
13. The concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$in a solution is $7 \times 10^{-4} \mathrm{M}$ at $25^{\circ} \mathrm{C}$. What is its hydroxide-ion concentration?
A. $\quad 7 \times 10^{-4} \mathrm{M}$
B. $1 \times 10^{-10} \mathrm{M}$
C. $3 \times 10^{-10} \mathrm{M}$
D. $1 \times 10^{-11} \mathrm{M}$
14. Which of the following statements is true concerning an aqueous solution of the weak base NH_{3} ?
A. OH^{-}is a stronger base than NH_{3}
B. OH^{-}is a stronger acid than $\mathrm{NH}_{4}{ }^{+}$
C. NH_{4}^{+}is a stronger acid than $\mathrm{H}_{3} \mathrm{O}^{+}$
D. NH_{3} is a weaker base than $\mathrm{H}_{2} \mathrm{O}$
15. Rank $\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{H}_{2} \mathrm{PO}_{4}^{-}$, and $\mathrm{HPO}_{4}{ }^{2-}$ in order of increasing acid strength.
A. $\mathrm{HPO}_{4}{ }^{2-}<\mathrm{H}_{2} \mathrm{PO}_{4}^{-}<\mathrm{H}_{3} \mathrm{PO}_{4}$
B. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}<\mathrm{HPO}_{4}{ }^{2-}<\mathrm{H}_{3} \mathrm{PO}_{4}$
C. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}<\mathrm{H}_{3} \mathrm{PO}_{4}<\mathrm{HPO}_{4}{ }^{2-}$
D. $\mathrm{HPO}_{4}{ }^{2-}<\mathrm{H}_{3} \mathrm{PO}_{4}<\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$
16. The autoionization of water, as represented by the equation below, is known to be endothermic. Which of the following correctly states what occurs as the temperature of water is raised?

$$
\mathrm{H}_{2} \mathrm{O}(\Lambda)+\mathrm{H}_{2} \mathrm{O}(\Lambda) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

A. The pH of the water decreases, and the water becomes more acidic.
B. The pH of the water decreases, and the water remains neutral.
C. The pH of the water increases, and the water remains neutral.
D. The pH of the water does not change, and the water remains neutral.
17. HA is a weak acid. Which equilibrium corresponds to the equilibrium constant K_{b} for $A-$?
A. $\quad \mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{2} \mathrm{~A}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
B. $\quad \mathrm{A}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \rightleftharpoons \mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
C. $\quad \mathrm{HA}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{H}^{+}(\mathrm{aq})$
D. $\quad \mathrm{A}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{HA}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
18. What is the hydroxide-ion concentration in a solution formed by combining 200 mL of 0.15 M HCl with 300 . mL of 0.090 M NaOH at $25^{\circ} \mathrm{C}$?

$$
\mathrm{NaOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H} 2 \mathrm{O}(\mathrm{I})
$$

A. $\quad 1.7 \times 10^{-13} \mathrm{M}$
B. $\quad 0.090 \mathrm{M}$
C. $\quad 1.7 \times 10^{-12} \mathrm{M}$
D. $\quad 0.054 \mathrm{M}$
19. In a solution, when the concentrations of a weak acid and its conjugate base are equal,
A. the system is not at equilibrium
B. the buffering capacity is significantly decreased
C. the -log of the $\left[\mathrm{H}^{+}\right]$and the -log of the Ka are equal
D. All of the above are true.
20. Indeterminate errors are caused by \qquad whereas method errors are caused by \qquad
A. Chemical or physical behaviour of the reagents and reactions; random events
B. The analyst's personal judgment and care; chemical or physical behaviour of the reagents and reactions
C. Random events; the analyst's personal judgment and care
D. Random events; chemical or physical behaviour of the reagents and the reaction

$$
20 \times 2.5=[50]
$$

SECTION B: LONG QUESTIONS

Answer the following questions in your answer book.

QUESTION 1

Describe the preparation of the following solutions:
1.1500 mL of $5 \%(\mathrm{~m} / \mathrm{v}) \mathrm{Cl}^{-}$from NaCl .
$1.2 \begin{aligned} & 5.00 \mathrm{~L} \\ & \text { solution }\end{aligned}$ of a $500 \mathrm{ppm} \mathrm{Na}_{2} \mathrm{SO}_{4}$ solution from a 0.25% (m/v) $\mathrm{Na}_{2} \mathrm{SO}_{4}$
1.3 20 L of 6 M HCl from the concentrated reagent which is $32 \%(\mathrm{~m} / \mathrm{m})$ and has an SG (specific gravity) of 1.21 .
1.4 5.00 L of $50 \mathrm{ppm} \mathrm{Na}^{+}$from 2.00 L of $200 \mathrm{ppm} \mathrm{Na}^{+}$

QUESTION 2

2.1 What is the difference between gas solid chromatography and gas-liquid chromatography.
2.2 List four major components of GC.
(a) Electromagnetic radiation
(b) Transmittance
(c) Qualitative analysis
(d) Monochromator
(e) Atomisation
2.3 What do the symbols " A " and " a " in the Beer-Lambert law mean?

SECTION C: LONG QUESTIONS

QUESTION 3

3.1 Calculate the present of ionization of acetic acid $\left(\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}\right)$ of the $1.0 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ solution.
3.2 Lactic acid $\left(\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{5}\right)$ is a waste product that accumulates in muscle tissue during exertion, leading to pain and a feeling of fatigue. In a 0.100 M aqueous solution, lactic acid is 3.7% dissociated. Calculate the value of K_{a} for this acid.
3.3 Calculate the pH of a solution containing 0.75 M lactic acid $\left(\mathrm{k}_{\mathrm{a}}=1.4 \times 10^{-4}\right)$ and 0.25 M sodium lactate. Lactic acid $\left(\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}\right)$ is a common constituent of biological system e.g. in milk and in human muscle tissue during exertion.

QUESTION 4

4.1 Hydrogen cyanide gas (HCN), a powerful respiratory inhibitor, is highly toxic. It is very weak acid $\left(\mathrm{Ka}=6.2 \times 10^{-10}\right)$ when dissolved in water. If a 50.0 mL sample of 0.100 M HCN is titrated with 0.100 M NaOH , calculate the pH of the solution:
(a) After 8.00 mL of 0.100 M NaOH had been added
(b) At the halfway (mid) point of the titration
(c) At the equivalent point of the titration
4.2 The amount of ascorbic acid, $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}$, in orange juice was determined by oxidizing the ascorbic acid to dehydroascorbic acid, $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6}$, with a known excess of $\mathrm{I}_{3}{ }^{-}$, and back titrating the excess $\mathrm{I}_{3}{ }^{-}$with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. A $5.00-\mathrm{mL}$ sample of filtered orange juice was treated with 50.00 mL of excess $0.01023 \mathrm{M} \mathrm{I}_{3}{ }^{-}$. After the oxidation was complete, 13.82 mL of $0.07203 \mathrm{M} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ was needed to reach the starch indicator end point. Calculate the concentration of ascorbic acid in milligrams per 100 mL .

Consider the following unbalanced chemical reactions:
(a) $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6 \text { (aq) }}+\mathrm{I}_{3}{ }^{-} \rightarrow \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6(\text { aq })}+\mathrm{I}_{\text {(aq) }}+2 \mathrm{H}^{+}$(aq)
(b) $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}{ }_{(\text {aq })}+\mathrm{I}_{3^{-}}{ }^{-}(\mathrm{aq}) \rightarrow \mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}{ }^{(\text {aq })}+\mathrm{I}^{-}(\mathrm{aq})$

DATA

$$
\begin{aligned}
& K_{w}=1 \times 10^{-14} \\
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\mathrm{C}_{\mathrm{b}} / \mathrm{C}_{\mathrm{a}}\right)=\mathrm{pK} \mathrm{a}_{\mathrm{a}}+\log \left(\mathrm{n}_{\mathrm{b}} / \mathrm{n}_{\mathrm{a}}\right) \\
& c=f \times \lambda \\
& \mathrm{T}=\mathrm{P}_{\text {out }} / \mathrm{P}_{\text {in }} \\
& A=\mathbf{a} \times \mathbf{b} \times \mathbf{C} \\
& E=h \times f \\
& \% ~ T=P_{\text {out }} / P_{\text {in }} \times 100 \\
& A=-\log _{10} T
\end{aligned}
$$

UNIVERSITY OF JOHANNESBURG

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	$\underset{173.04}{\text { Y }}$	$\mathrm{Lu}_{174,97}$
Th	$\underset{\text { Pa }}{\text { 23IOt }}$	${ }^{92} \mathbf{U}_{2880}$		$\mathrm{Pu}_{(244}$	${ }^{95}{ }_{\text {Am }}^{123}$ ($\mathrm{Cm}_{(247)}$	$\mathbf{B k}_{24}$	${ }^{98} \mathbf{C f}$	$\mathrm{Es}_{(1252}$	$\mathrm{Fm}_{[257}{ }^{1}$	$\underset{\text { (258) }}{\text { Md }}$	$\underset{\text { no }}{\text { c5, }}$	$\mathrm{Lr}_{\text {[260 }}$

