

FACULTY OF SCIENCE

DEPARTMENT OF CHEMICAL SCIENCES

MODULE: CEM0087/CEM8X06

STRUCTURAL CHEMISTRY

CAMPUS: APK

TEST: EXAMINATION

DATE: NOVEMBER 2019

SESSION:

ASSESSORS: PROF A. MULLER

MODERATOR: PROF B.O. OWAGA (UKZN)

DURATION: 3 HOURS

MARKS: 100

NUMBER OF PAGES 7 PAGES, INCLUDING COVER PAGE AND

SUPPLEMENTARY INFORMATION

INSTRUCTIONS ANSWER ALL QUESTIONS

APPLY CORRECT USE OF SIGNIFICANT FIGURES

WHERE APPLICABLE

CALCULATORS MAY BE USED TO ANSWER

QUESTIONS

BOTH QUESTION AND ANSWER SHEETS MUST

BE HANDED IN AT THE END OF THE EXAM

ALL QUESTIONS REQUIRE THAT YOU SHOW THE

INDIVIDUAL STEPS ON HOW YOU ARRIVED AT

THE ANSWER.

QUESTION 1 [7]

Briefly describe the crystallization technique of vapour diffusion to grow single crystals.

QUESTION 2 [11]

Describe the following terms as used in crystallography:

a)	I-centred lattice		((3 marks)
b)	Braggs Law		(3 marks)
c)	Space group diagram		(3 marks)
d)	Systematic absence		(2 marks)

QUESTION 3 [4]

Assign the Miller indices of the diffraction plane indicated below:

QUESTION 4 [6]

The ionic compound [(C₁₁H₂₀N₂)₂P][Cl]·n(C₇H₈) crystallizes in the space group $P\bar{l}$ with a = 10.134(3), b = 12.243(3), c = 13.037(3) Å, α = 103.358(4), β = 99.906(5), γ = 100.772(4)°, V = 1506.31ų. Given that the measured density is 1.145g cm⁻³, what conclusions can you draw about the structure?

QUESTION 5 [16]

a) State all the information that can be extracted from the Herman-Mauguin notation, *P*2₁ space group. (5 marks)

- b) Construct a 2-D space group diagram of *P*2₁. Include the following details below the diagram: (11 marks)
 - i. number of equivalent positions contained in the unit cell and their position(s) in crystallographic coordinates,
 - ii. if the space group is enantiomorphous or non-enantiomorphous,
 - iii. if the space group is centrosymmetric or non-centrosymmetric, and
 - iv. the reduced multiplicity of the special position(s) if present

QUESTION 6 [7]

What systematic absences are expected if the following symmetry elements are present?

- a) I centered lattice
- b) c glide perpendicular to a-axis
- c) mirror perpendicular to b-axis
- d) 2₁ along c-axis

QUESTION 7 [11]

Powder X-ray data can be collected through the Debye-Scherrer method.

- a) Explain the origin of the Debye rings observed with the method. (3 marks)
 - b) Briefly describe how data is extracted from this method. (3 marks)
 - c) Briefly discuss the refinement methodology for powder diffraction data.

(3 marks)

d) Name and briefly describe another method available to collect X-ray powder diffraction data. (2 marks)

QUESTION 8 [8]

The success of single crystal X-ray data refinement relies on the correct interpretation of the F_0 - F_0 map, and usually results in a model where all atoms are normalized to have the same size. Deviations from these may indicate the presence of disorder in the data.

Briefly answer the following:

- a) List another cause that can also be responsible for atom sizes not to be normalized properly, and explain why. (2 marks)
- b) Briefly describe how disorders are treated during refinement. (2 marks)
- c) Refinement of a disorder is usually also accompanied by inclusion of restraints or constraints, briefly explain what these are. (4 marks)

QUESTION 9 [4]

List three interactions, in order of increasing strength, which may be present in crystal packing.

QUESTION 10 [10]

The crystal structure of 2,3,5,6-tetrachloro-trans-1,4-diethynylcyclohexa-2,5-diene-1,4-dione show intermolecular interactions as shown below. Take careful note of the intermolecular interactions, (in red and light blue) and:

- a) Circle these interactions on your question paper
- b) Provide a graph set notation for each.

QUESTION 11 [6]

Give a description on pi-pi stacking observed in crystal packing. Include in your discussion a detailed picture to illustrate various geometrical aspects that should be taken into account when analysing this interaction.

QUESTION 12 [6]

List and briefly describe three types of supramolecular polymers.

QUESTION 13 [4]

List and briefly detail the two models developed for the use in charge-density mapping.

TOTAL [100]

Supplementary information

Selected systematic absences

Unit cell Absent

A hkl, k+l = 2n+1 (odd)

B hkl, h+l = 2n+1

C hkl, h+k = 2n+1

I hkl, h+k+l = 2n+1

F hkl, mixed (not all even or all odd)

Glide planes Absent

a-glide h0l, h = 2n+1

c-glide h0l, l = 2n+1

n-glide h0l, h+l = 2n+1

d-glide hhl, 2h+l = 4n+1

screw axes Absent

 2_1 parallel to a h00, h = 2n+1

 2_1 parallel to b 0k0, k = 2n+1

 2_1 parallel to c 00l, I = 2n+1

 4_1 parallel to c 00l, I = 4n+1

Constants and formulas: Avogadro number (N_A) = $6.023 \times 10^{23} \text{ mol}^{-1}$

Distances between planes in a cubic lattice:

$$\frac{1}{d_{hkl}^2} = \frac{1}{a^2} \left(h^2 + k^2 + l^2 \right)$$

Lu 174.97

Yb 173.05

Tm 168.93

Er 67.26

Ho 164.93

Dy 162.50

Tb 158.93

Gd 157.25

Eu 151.96

Sm 150.36

Pm (143)

8 Nd 1424

Pr 140.91

Ce 58

La 38.91

* Lanthanide series

262 262

No No (259)

Md (258)

Fm (257)

ES (252)

§**℃**%

(247)

Cm 247)

Am (243)

4 2

N (237)

Pa 231.04

232.04

Actinide series

18 He 4.0026	10 Ne 20.180	18 Ar 39.948	36 Kr 83.798	54 Xe 131.29	86 Rn (222)	Og (294)
17	9 F 18.998	17 Cl 35.45	35 Br 79.904	53 I 126.90	85 At (210)	TS TS (294)
91	8 O 15.999	16 S 32.06	34 Se 78.97	52 Te 127.60	84 Po (209)	116 Lv (293)
15	7 N 14.007	15 P 30.974	33 As 74.922	51 Sb 121.76	83 Bi 208.98	Mc (289)
4	6 C 12.011	14 Si 28.085	32 Ge 72.630	50 Sn 118.71	82 Pb 207.2	114 F1 (289)
13	5 B 10.81	13 Al 26.982	31 Ga 69.723	49 In 114.82	81 TI 204.38	113 Nh (286)
		12	30 Zn 65.38	48 Cd 112.41	80 Hg 200.59	Cn Cn (285)
		=	29 Cu 63.546	47 Ag 107.87	79 Au 196.97	111 Rg (280)
		10	28 Ni 58.693	46 Pd 106.42	78 Pt 195.08	Ds (281)
		6	27 Co 58.933	45 Rh 102.91	77 Ir 192.22	109 Mt (276)
		∞	26 Fe 55.845	44 Ru 101.07	76 Os 190.23	108 Hs (277)
		7	25 Mn 54.938	43 Te (98)	75 Re 186.21	107 Bh (270)
		9	24 Cr 51.996	42 Mo 95.95	74 W 183.84	Sg (271)
		5	23 V 50.942	41 Nb 92.906	73 Ta 180.95	105 Db (268)
		4	22 Ti 47.867	40 Zr 91.224	72 Hf 178.49	104 Rf (265)
		e	21 Sc 44.956	39 Y 88.906	\$7-71	89-103 #
- 2	4 Be 9.0122	12 Mg 24.305	20 Ca 40.078	38 Sr 87.62	56 Ba 137.33	88 Ra (226)
1 TH 1 1008	3 Li 6.94	11 Na 22.990	19 K 39.098	37 Rb 85.468	55 Cs 132.91	87 Fr (223)