FACULTY OF SCIENCE

```
DEPARTMENT OF CHEMICAL SCIENCES
MODULE: CEM0087/CEM8X06
    STRUCTURAL CHEMISTRY
CAMPUS: APK
TEST: EXAMINATION
DATE: NOVEMBER 2019
SESSION:
ASSESSORS: PROF A. MULLER
MODERATOR: PROF B.O. OWAGA (UKZN)
DURATION: 3 HOURS
MARKS: 100
```

NUMBER OF PAGES 7 PAGES, INCLUDING COVER PAGE AND
SUPPLEMENTARY INFORMATION
INSTRUCTIONS ANSWER ALL QUESTIONS
APPLY CORRECT USE OF SIGNIFICANT FIGURES
WHERE APPLICABLE

CALCULATORS MAY BE USED TO ANSWER

 QUESTIONSBOTH QUESTION AND ANSWER SHEETS MUST BE HANDED IN AT THE END OF THE EXAM

ALL QUESTIONS REQUIRE THAT YOU SHOW THE INDIVIDUAL STEPS ON HOW YOU ARRIVED AT THE ANSWER.

Briefly describe the crystallization technique of vapour diffusion to grow single crystals.

QUESTION 2

Describe the following terms as used in crystallography:
a) I-centred lattice (3 marks)
b) Braggs Law
(3 marks)
c) Space group diagram
(3 marks)
d) Systematic absence

QUESTION 3

Assign the Miller indices of the diffraction plane indicated below:

QUESTION 4

The ionic compound $\left[\left(\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{~N}_{2}\right)_{2} \mathrm{P}\right][\mathrm{Cl}] \cdot \mathrm{n}\left(\mathrm{C}_{7} \mathrm{H}_{8}\right)$ crystallizes in the space group $P_{\text {i }}$ with $a=10.134(3), b=12.243(3), c=13.037(3) \AA, \alpha=103.358(4), \beta=99.906(5), \gamma=$ $100.772(4)^{\circ}, \mathrm{V}=1506.31 \AA^{3}$. Given that the measured density is $1.145 \mathrm{~g} \mathrm{~cm}^{-3}$, what conclusions can you draw about the structure?
a) State all the information that can be extracted from the Herman-Mauguin notation, $P 2{ }_{1}$ space group.
(5 marks)
b) Construct a 2-D space group diagram of $P 2_{1}$. Include the following details below the diagram:
(11 marks)
i. number of equivalent positions contained in the unit cell and their position(s) in crystallographic coordinates,
ii. if the space group is enantiomorphous or non-enantiomorphous,
iii. if the space group is centrosymmetric or non-centrosymmetric, and
iv. the reduced multiplicity of the special position(s) if present

QUESTION 6

[7]

What systematic absences are expected if the following symmetry elements are present?
a) I centered lattice
b) c glide perpendicular to a-axis
c) mirror perpendicular to b-axis
d) 21 along c-axis

QUESTION 7

Powder X-ray data can be collected through the Debye-Scherrer method.
a) Explain the origin of the Debye rings observed with the method.
b) Briefly describe how data is extracted from this method.
c) Briefly discuss the refinement methodology for powder diffraction data.
(3 marks)
d) Name and briefly describe another method available to collect X-ray powder diffraction data.

The success of single crystal X-ray data refinement relies on the correct interpretation of the $F_{0}-F_{c}$ map, and usually results in a model where all atoms are normalized to have the same size. Deviations from these may indicate the presence of disorder in the data.

Briefly answer the following:
a) List another cause that can also be responsible for atom sizes not to be normalized properly, and explain why.
b) Briefly describe how disorders are treated during refinement.
c) Refinement of a disorder is usually also accompanied by inclusion of restraints or constraints, briefly explain what these are.

QUESTION 9

List three interactions, in order of increasing strength, which may be present in crystal packing.

QUESTION 10

The crystal structure of 2,3,5,6-tetrachloro-trans-1,4-diethynylcyclohexa-2,5-diene-1,4-dione show intermolecular interactions as shown below. Take careful note of the intermolecular interactions, (in red and light blue) and:
a) Circle these interactions on your question paper
b) Provide a graph set notation for each.

QUESTION 11

Give a description on pi-pi stacking observed in crystal packing. Include in your discussion a detailed picture to illustrate various geometrical aspects that should be taken into account when analysing this interaction.

QUESTION 12

List and briefly describe three types of supramolecular polymers.

QUESTION 13

List and briefly detail the two models developed for the use in charge-density mapping.

Supplementary information

Selected systematic absences

Unit cell
A hkl, $k+l=2 n+1$ (odd)
B
C
I

F

Glide planes
a-glide
c-glide
n-glide
d-glide
screw axes
21 parallel to a
$h 00, h=2 n+1$
21 parallel to b
$0 k 0, k=2 n+1$
21 parallel to c
00I, $I=2 n+1$
41 parallel to c
Absent
$001, I=4 n+1$

Absent
hOI, $h=2 n+1$
hOI, $\mathrm{I}=2 \mathrm{n}+1$
hOl, $h+1=2 n+1$
$h h l, 2 h+l=4 n+1$

Constants and formulas：

Avogadro number $\left(\mathrm{N}_{\mathrm{A}}\right)=6.023 \times 10^{23} \mathrm{~mol}^{-1}$
Distances between planes in a cubic lattice：$\frac{1}{d_{h k l}^{2}}=\frac{1}{a^{2}}\left(h^{2}+k^{2}+l^{2}\right)$

\sim ํㅜํ ํㅜํ		¢券	¢占耧			
\wedge	O以 0	二0会	的熍喜	二ー	めそ衰	三舟需
\bigcirc	∞ O	－n ${ }_{\text {d }}^{0}$	おら\％	的	あき，部	云雲
\cong	－2	$\sim \sim$ 宗	72年		\％$\square_{\text {\％}}^{\circ} \mathrm{O}$	気运
\pm			\％勺ै \％			三乐気
\cdots	$\sim \triangle$＂	－器			$\bar{\infty}$ F ${ }_{\text {d }}^{\circ}$	动言
		\simeq		等己	จ훈 잇	ここ気
		$=$	2े ${ }^{\circ}$		2，会	\equiv ® ${ }_{\sim}^{\text {a }}$
		\bigcirc	¢\％${ }_{\text {z }}^{\text {\％}}$		～む	
		σ	त已 ${ }_{\text {\％}}^{\text {\％}}$	${ }_{7}$	Fム先	
		∞			¢6\％	으ำ过
		\checkmark	入云券	7 7 枵	\sim \％${ }_{\text {¢ }}^{\text {¢ }}$	気気気
		－	式ち券	7 ® $_{\text {\％}}^{6}$	动 ${ }_{\text {a }}^{\text {a }}$	\％\％\％
		in	分 券	于会枵	\％\＃\％	シャロ
		\checkmark	オF	¢ ¢ 答	\therefore \＃	
		m	二以゙缶	क入入	宗＊	\％
${ }^{\sim}$	＋\％\％	은출	8び䒨		枵荷答	\％ㅋㅜㅢ
－-m	－3 3	$=\overbrace{\text { 二 }}^{\text {¢ }}$		动令	～0 ${ }^{\text {a }}$	¢上気

二玉产	ㄴ．
Rė	응웅
SE ${ }_{\text {\％}}^{0}$	흐릇
	\％${ }_{-}$
59울	कुज
8 家	ঞัも
	5嗞気
त चु	2，㤩过
3 $\square^{2} \frac{8}{6}$	ヶ系僉
	コき婁
或鱼	
8 8管等	20
ぶ而	$\bar{\sim} \underbrace{\frac{\pi}{\text { a }}}$
～0 \％等	
	®\％乐

＊Lanthanide
series
\＃Actinide
series

