

EXAMINERS:

CEM 2EB1/1A2E

SUPPLEMENTARY EXAM JANUARY 2020

DR. T. BREDENKAMP, DR. A. ADEYINKA

MODERATOR:	DR N. BINGWA
DATE:	07/01/2020
TIME:	120 min
MARKS:	70
INSTRUCTIONS:	
1. This paper consists	of 8 pages including a Periodic Table.
2. WRITE YOUR NAM	IE, SURNAME AND STUDENT NUMBER AND
LECTURER'S NAM	IE ON THIS SHEET. ANSWER ALL QUESTIONS IN THE
BOOKLET PROVID	DED
3. Calculators are allo	wed but no cell phones may be used.
4. Use the correct nu	mber of significant figures when doing calculations.
NAME:	
SURNAME:	
STUDENT NUMBER:_	
LECTURER:	

MULTIPLE CHOICE [20 MARKS]

1. Which of the following is false?

- (1)
- a. Experiments can be used to show that a theory is somewhat limited in scope.
- b. A hypothesis which has successfully withstood many tests eventually can become a theory.
- c. In general, a theory can be proven to be absolutely true.
- d. In general, a theory cannot be proven to be absolutely true.
- e. A theory is an explanation of general principles, which has withstood repeated testing.
- 2. Which is an example of a physical change?

(1)

- a. A piece of paper burns in air with a smoky flame.
- b. The crude metal ore was first heated then combined with pure oxygen gas to make the oxide of the metal.
- c. The chef made scrambled eggs for their breakfast.
- d. Steam from the boiling water condenses on the cooler part of the ceiling.
 - e. The table salt in the warehouse was used to make some of the polymeric material.
- 3. What is the formula for manganese (III) monohydrogen phosphate? (1)
 - a. MnHO₄

b. MnHPO₄

c. MnHPO₃

d. Mn₂(HPO₄)₃

- e. Mn₃HPO₄
- 4. Two elements, Qr and E, combine to form an ionic compound whose formula is QrE₂. Qr also combines with element Z to form an ionic compound, Qr₃Z₂. Based on this information, what is a reasonable value for the charge on E? (Assume that Qr has the same charge in both compounds.)
 - a. 1+

b. 2-

c. 2+

d.1-

- e. 3-
- 5. Phosphorus tribromide (PBr₃, 270.69 g mol⁻¹) and water (18.015 g mol⁻¹) react to form phosphorous acid (H₃PO₃, 81.996 g mol⁻¹) and hydrogen bromide (80.912 g mol⁻¹). If 0.5000 moles of phosphorus tribromide was reacted with 2.000 moles of water

and 98.048 grams of hydrogen bromide were	obtained, what was the percent yield
from the reaction?	(2)
a. 72.16 %	b. 97.22 %
c. 78.62 %	d. 80.79 %
e. 85.93 %	
6. Which statement below is true?	(1)
a. All acids are strong electrolytes and ioniz	ze completely when dissolved in water.
b. All bases are weak electrolytes and ioniz	ze completely when dissolved in water.
c. All bases are strong electrolytes and ioni	ze completely when dissolved in water.
d. All salts are strong electrolytes and dis	ssociate completely if they dissolve in
water.	
e. All salts are weak electrolytes and ionize	e partially when dissolved in water.
7. Complete the balancing of the following half-	reaction, taking place in basic media,
$Br(aq) \rightarrow BrO_3(aq)$	
How many hydroxide ions are needed to b	alance it? (2)
a. 2 hydroxide ions, on the left side	
b. 4 hydroxide ions, on the left side	
c. 4 hydroxide ions, on the right side	
d. 6 hydroxide ions, on the left side	
e. 6 hydroxide ions, on the right side	
8. Consider the unbalanced redox equation,	
$C_4H_{10}(I) + Cr_2O_7^{2-}(aq) + H^+(aq) \rightarrow$	$H_6C_4O_4(s) + Cr^{3+}(aq) + H_2O(1)$
The oxidizing agent is	(1)
a. C ₄ H ₁₀ (<i>I</i>)	b. Cr ₂ O ₇ ² -(<i>aq</i>)
c. H ⁺ (<i>aq</i>)	d. H ₆ C ₄ O ₄ (s)
e. Cr ³⁺ (<i>aq</i>)	
9. How many unpaired electrons are in gold?	(1)
a. 2	b. 1
c. 6	d. 8
e. 4	
10. Given the following sets of quantum numbers	pers for n , l , m_l , and m_s , which one of
these sets is not possible for an electron in an	atom? (1)
n I m	nı ms

	a. 4	2	2	-1/2			b. 3	1	-1	-1			
	c. 4	3	2	1/2			d. 4	3	-2	-1/2			
	e. 5	2	2	1/2									
11. Which	atom l	has t	he s	mallest	first ioni	ization	energ	y?					(1)
	a. Ba						b. Cs						
	c. C						d. K						
	e. Mg	l											
12. An op	en-en	d me	ercur	y manc	meter v	was co	nstruc	ted	from	n a U-	shaped	tube	and
connected	to a g	as c	onta	iner. In	a partic	ular m	easure	eme	nt, th	ie leve	I in the	end of	f the
tube conn	ected	to th	e ga	s conta	iner me	asured	82.8	cm a	abov	e the	U-neck	, while	the
level in the	e open	end	(to th	ne atmo	sphere)	was 1	7.2 cm	abo	ove t	he U-n	ieck. T	he out	side
air pressu	re in th	ne la	bora	tory wa	s meası	ured as	s 764 t	orr.	Wh	at is th	e press	sure in	the
gas conta	iner?												(2)
	a. 159 torr				b. 10	3 tor	r						
	c. 69	8 tor	r				d. 830) tor	r				
	e. 14	20 to	orr										
13. A gas	sample	e occ	upie	s a volu	ıme of 1	.446 L	when	the	temp	peratui	re is 18	5.0 °C	and
the pressu	ure is 6	24 to	orr. I	How ma	ny mole	ecules	are in	the	samı	ple?			(2)
	a. 1.90×10^{22} b. 2.82×10^{22}												
	c. 4.71×10^{22} d. 9.10×10^{21}												
	e. 9.	10 ×	10 ²²										
14. A sam	ple of	a gas	s occ	cupies a	a volume	e of 1.4	162 lite	ers a	t 30.	00°C a	and 1.2	.50 atn	n. It
was place	ed in a	diffe	erent	vessel	in whic	h the	pressu	ire v	vas r	neasu	red as	722.5	torr
when the	tempe	ratur	e wa	s 25.20	°C. Wh	nat was	the v	olum	ne of	this ne	ew vess	sel?	(2)
	a. 1.8	892 I	iters				b. 0.5	285	liter	S			
	c. 2.1	25 x	10-3	³ liters			d. 1.6	15 li	iters				
	e. 47	0.7 li	ters										
15. SO ₂ ca	an read	ct wit	h Oł	Ⅎ⁻, form	ing HSC) ₃ In	this re	actio	on,				(1)
a.	the O	H⁻ ic	on a	cts as a	a Lewis	base,	donat	ing	an e	lectror	n pair t	o the	SO ₂
	molecule to form a coordinate covalent bond.												
b. the SO ₂ acts as a Lewis acid, accepting a proton from the OH- ion.													

d. the SO₂ acts as a Brønsted acid, accepting a proton from the OH- ion.

molecule.

c. the OH- ion acts as a Brønsted base, donating a proton to the SO₂

e. the OH ion acts as a Lewis acid, accepting an electron pair from the SO₂ molecule to form a coordinate covalent bond.

Question 1 [17 MARKS]

- 1.1) Titanium metal can exist as Ti²⁺, Ti³⁺ and Ti⁴⁺ ions. Provide the chemical formula and name of the compounds formed from the combination of each of these possible Titanium ions and PO₄²⁻ anion. (6).
- 1.2) Write the formulas for the following molecules (i) dinitrogen trioxide (ii) disulpur dichloride. (2).
- 1.3) Solder is an alloy containing the metals tin and lead. A particular sample of this alloy weighing 0.875 g was dissolved in acid. All of the tin was then converted to the +2 oxidation state. Next, it was found that 0.184 g Na₂Cr₂O₇ was required to oxidize the Sn²⁺ to Sn⁴⁺ in an acidic solution. In the reaction, the chromium was reduced to Cr³⁺ ion.
 - a) Write a balanced net ionic equation for the reaction between Sn^{2+} and Cr_2O_7 in an acidic solution. (3)
 - b) Calculate the number of grams of tin that were in the sample of solder. (2)
 - c) What was the percentage by mass of tin in the solder? (2)
 - d) How many Pb atoms are present in the Solder alloy sample? (2)

Question 2 [20 MARKS]

- 2.1) Suppose you wanted to make an electrical circuit using aqueous solutions to light up a bulb. Which of the following materials will you add to water to make this possible?Explain you reasoning. (3)
 - 10 g Fructose, 10 g sodium chloride, 50 g ethanol or 50 g lead(II)chloride
- 2.2) How many milligrams of MgI₂ must be added to 250.0 mL of 0.0876 M KI to produce a solution with $[I^-] = 0.1000$ M? (4)
- 2.3) The molar mass of a certain metal carbonate, MCO₃, can be determined by adding an excess of HCl acid to react with all the carbonate and then "backtitrating" the remaining acid with NaOH. The equations are:

$$MCO_3(s) + 2HCI(aq) \rightarrow MCI_2(aq) + H_2O(I) + CO_2(g)$$

 $HCI(aq) + NaOH(aq) \rightarrow NaCI(aq) + H_2O(I)$

In a certain experiment, 20.00 mL of 0.0800 *M* HCl were added to a 0.1022-g sample of MCO₃. The excess HCl required 5.64 mL of 0.1000 *M* NaOH for neutralization. Calculate the molar mass of the carbonate and identify M. (8)

2.4) In alcohol fermentation, yeast converts glucose to ethanol and carbon dioxide:

$$C_6H_{12}O_6(s) \rightarrow 2C_2H_5OH(I) + 2CO_2(g)$$

If 5.97 g of glucose are reacted and 1.44 L of CO₂ gas are collected at 293 K and 0.984 atm, what is the percent yield of the reaction? (5)

Question 3 [5 MARKS]

3.1 The frequency of electromagnetic radiation emitted from a hydrogen atom from n = 4 to n_f is 6.17 x 10^{14} /s. Determine the value of n_f . (5)

Question 4 [8 MARKS]

- 4.1) The compound Mg(OH)₂ is basic, but Si(OH)₄ is an acid (silicic acid). Explain the reason for this observation. (2)
- 4.2) Explain why H_2S is a stronger acid than H_2O (2)
- 4.3) Use Lewis structures to show the Lewis acid-base reaction between NH₂-and H⁺ to give NH₃. Identify the Lewis acid and the Lewis base in the reaction (4)

END OF PAPER

CEM1A2E DATA SHEET

Constants:

 $R = 0.08206 L atm mol^{-1} K^{-1}$

 $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

 $h = 6.626 \times 10^{-34} \text{ J.s}$ (Planck's constant)

 $R_H = 1.097 \times 10^7 \, \text{m}^{-1}$

 $c = 3.00 \times 10^8 \,\mathrm{m.s^{-1}}$

 $\Delta E = -hcR_H \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$

$$\frac{1}{\lambda} = R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

Activity of metals:

 $K \rightarrow K^+ + e^-$

 $Na \rightarrow Na^+ + e^-$

 $Mg \rightarrow Mg^{2+} + 2e^{-}$

 $AI \rightarrow AI^{3+} + 3e^{-}$

 $Zn \rightarrow Zn^{2+} + 2e^{-}$

 $Cr \rightarrow Cr^{3+} + 3e^{-}$

 $Fe \rightarrow Fe^{2+} + 2e^{-}$

 $Ni \rightarrow Ni^{2+} + 2e^{-}$

 $Sn \rightarrow Sn^{2+} + 2e^{-}$

 $Pb \rightarrow Pb^{2+} + 2e^{-}$

 $H_2 \ \rightarrow \ 2H^+ \ + \ 2e^-$

 $Cu \rightarrow Cu^{2+} + 2e^{-}$

 $Ag \rightarrow Ag^+ + e^-$

 $Au \rightarrow Au^{3+} + 3e^{-}$

Standard temperature and pressure	(STP)
1 standard temperature	0°C
1 standard temperature	273 K
1 standard pressure	1 atm
1 standard pressure	760 torr
1 standard pressure	14.7 psi

PV = nRT R = 0.08206 L.atm/mol.k 760 mmHg = 760 torr = 1 atm