

	DEPARTMENT OF CHEMICAL SCIENCES
MODULE	CEM3B10/CEM01B3 INSTRUMENTAL CHEMICAL ANALYSIS
CAMPUS	АРК
EXAM	January 2020

DATE: January 2020

ASSESSOR:

EXTERNAL MODERATOR:

DURATION: 3 HOURS

SESSION:

DR. AA AMBUSHE

PROF. KL MANDIWANA

MARKS: 100

NUMBER OF PAGES: 13

GENERAL INSTRUCTIONS

- 1. This paper consists of 13 pages including a Periodic Table and information sheet.
- 2. The use of calculators is allowed but mobile phones may not be used.
- 3. All answers must be given to correct number of significant figures.
- 4. Answer all questions giving detailed explanation wherever required.
- 5. Write neatly and legibly.
- 6. Use allocated marks to gauge the amount of information to give as answer.

QUESTION ONE

- 1.1. Write the types of transitions that take place when electromagnetic radiation in each of the following spectral regions interacts with the sample. (2)
 - a) Infrared
 - b) NMR
- 1.2. Either a monochromator or polychromator can be used in a spectrometer as a wavelength selector. Differentiate between these two wavelength selectors. (4)
- 1.3. Draw a fully annotated sketch of a single beam UV-Visible spectrophotometer.(4)
- 1.4. Why are the absorption spectra of ions of the lanthanide and actinide series in aqueous solutions narrower than the absorption spectra of first and second row transition series ions? (3)
- 1.5. Discuss important properties of a solvent that need to be considered during selection of a solvent for UV-VIS absorption experiments. (4)
- 1.6. Ruthenium(II) and osmium(III) complexes can be determined simultaneously by a reaction with methiomerprazine. The absorption maximum of the ruthenium complex occurs at 480 nm, while that of osmium complex occurs at 635 nm. Molar absorptivity data at these wavelengths are as follows:

	Molar absorptivity, ε									
	480 nm	635 nm								
Ruthenium complex	3. 55 x 10 ³	5.64 x 10 ²								
Osmium complex	2.96 x 10 ³	1.45 x 10 ⁴								

A 25.0 mL sample was treated with an excess of methiomeprazine and subsequently diluted to 100.0 mL. Calculate the molar concentrations of ruthenium(II), c_{Ru} , and osmium(III), c_{Os} , in the original sample if the diluted solution had an absorbance of 0.533 at 480 nm and 0.590 at 635 nm when measured in a 2 cm cell. (5)

1.7. Why is IR spectroscopy less suitable for quantitative analysis than UV/VIS spectroscopy? (3)

[25]

QUESTION TWO

- 2.1. Briefly explain the meaning of each of the following as referred to in atomic spectroscopy:
 a) Atomization (2)
 b) Nebulization (2)
- 2.2. In flame atomic absorption spectrometry with an acetylene/air flame, the absorbance for iron decreased in the presence of large concentrations of sulfate ion.
 - a) Suggest an explanation for this observation. (2)
 - b) Suggest three possible methods of overcoming the potential interference of sulfate in a quantitative determination of iron. (3)
- 2.3. Briefly explain the principle of hydride generation atomic absorption spectrometry. (5)
- 2.4. What are the possible sources of background in AAS? (4)
- 2.5. What are the functions of nebuliser gas flow in ICP-OES and ICP-MS? (3)

2.6. Briefly explain the function of each of the following components of an ICP-OES.

(3)

- a) Peristaltic pump
- b) RF generator
- c) Monochromator

[24]

QUESTION THREE

3.1. A chromatogram of a two-component mixture on a 25-cm packed liquid chromatography column is shown in the figure below. The flow rate was 0.40 mL/min. Consider the peak widths at the base for components A and B are 20 and 25 minutes, respectively.

- (a) Find the times that components A and B spent in the stationary phase. (2)
- (b) Determine the retention factors for the two components. (2)
- (c) Calculate the resolution of the two peaks. (2)
- (d) Are these components completely resolved? Give a reason for your answer.

(2)

- (e) Calculate the average number of plates for the column. (2)
- 3.2. Gas chromatography (GC) is used for separation of volatile compounds.

- a) Explain how separation occurs in GC when analysing similar compounds.
 - (2)
- b) Mention the differences between split and splitless injection. (2)
- 3.3. In figure below, describe the type of temperature programme that was used for each of the chromatograms shown and its effect on the separation. How was the separation improved? (7)

- 3.4. On a C₁₈ bonded phase, a particular compound moves too slowly in a methanol/acetonitrile (50/50) solvent. What adjustment should be made to the ratio of solvents?
 (2)
- 3.5. Clearly distinguish between gel filtration and gel permeation. (2)

[25]

QUESTION FOUR

4.1.	Describe the alkaline error in the measurement of a pH.	(2)
	a) Under what circumstances is this error appreciable?	(1)
	b) How is the pH data affected by the alkaline error?	(1)

- 4.2. Why is it necessary to bubble hydrogen through the electrolyte in a hydrogen electrode? (3)
- 4.3. Calculate the potential for a platinum electrode immersed in a solution that is 0.0150 M in KBr and $1.00 \times 10^{-3} \text{ M}$ in Br₂.

$$Br_2(aq) + 2e^- \neq 2Br^ E^\circ = 1.087 V$$
 (3)

4.4. The following is an illustration of an electrochemical cell, with a calomel reference electrode.

- a) Describe the type of indicator electrode shown above. (1)
- b) What are some of the disadvantages associated with using this type of indicator electrode?
 (2)
- c) Define junction potential and comment on where this could possibly arise from for the above set-up.
 (2)

- 4.5. Briefly describe asymmetry potential.
- 4.6. How do concentration polarisation and kinetic polarisation resemble each other and how do they differ? (3)
- 4.7. Calculate the time needed for a constant current of 0.852 Amperes to deposit0.250 g of Co(II) as:

(a) Elemental cobalt on the surface of a cathode.	(3)
(b) Co ₃ O ₄ on an anode.	(3)

7

(2)

[26]

Information sheet

$$[\mathbf{X}]_{i} = \left(\frac{V_{\mathrm{aq}}}{V_{\mathrm{org}}K + V_{\mathrm{aq}}}\right)^{i} [\mathbf{X}]_{0}$$

$$A_1 = \varepsilon_{M_1} b c_M + \varepsilon_{N_1} b c_N$$

$$A_2 = \varepsilon_{\rm M_2} b c_{\rm M} + \varepsilon_{\rm N_2} b c_{\rm N}$$

 $N = 16 \left(\frac{t_R}{W}\right)^2$ $H = \frac{L}{N}$ $k_A = \frac{t_R - t_M}{t_M}$ $\alpha = \frac{(t_R)_B - t_M}{(t_R)_A - t_M}$ $N = 5.54 \left(\frac{t_R}{W_{1/2}}\right)^2$ $R_S = \frac{2\Delta Z}{W_A + W_B} = \frac{2\left[(t_R)_B - (t_R)_A\right]}{W_A + W_B}$

$$R_{S} = \frac{\sqrt{N}}{4} \left(\frac{\alpha - 1}{\alpha}\right) \left(\frac{k_{B}}{1 + k_{B}}\right)$$

Faraday = 96 485 C mol⁻¹

Appendix 5

Standard and Formal Electrode Potentials

Half-Reaction	<i>E</i> °, V*	Formal Potential, V ⁺
Aluminum		
$Al^{3+} + 3e^{-} \rightleftharpoons Al(s)$	-1.662	
Antimony		
$Sb_2O_5(s) + 6H^+ + 4e^- \rightleftharpoons 2SbO^+ + 3H_2O$	+0.581	
Arsenic		
$H_3AsO_4 + 2H^+ + 2e^- \rightleftharpoons H_3AsO_3 + H_2O$	+0.559	0.577 in 1 M HCl, HClO ₄
Barium		
$Ba^{2+} + 2e^{-} \rightleftharpoons Ba(s)$	-2.906	
Bismuth $P(O^{+} + O^{+}) = P(O^{+} + U^{-})$	1.0.000	
$B_1O_1^+ + 2H_2^+ + 3e \rightleftharpoons B_1(s) + H_2O_2^-$	+0.320	
$BICI_4 + 3e \rightleftharpoons BI(s) + 4CI$	+0.16	
Bromine $\operatorname{Br}(I) + 2r^{-} \rightarrow 2\operatorname{Br}^{-}$	+1.065	1.05 in (M HC)
$Br_2(t) + 2e \leftarrow 2Br$ $Br_2(t) + 2e^- \rightarrow 2Br^-$	+1.005 $+1.087^{\ddagger}$	1.0) III 4 IVI FICI
$Br_2(uq) + 2e \leftarrow 2Br_2(uq) + 3H_2(uq) + 2e \leftarrow 2Br_2(uq) + 3H_2(uq) + 2H_2(uq) + 2H_2(uq)$	+1.52	
$BrO_3^- + 6H^+ + 6e^- \rightarrow Br^- + 3H_0$	+1.52	
Cadmium		
$Cd^{2+} + 2e^{-} \Longrightarrow Cd(s)$	-0.403	
Calcium		
$Ca^{2+} + 2e^{-} \rightleftharpoons Ca(s)$	-2.866	
Carbon		
$C_6H_4O_2$ (quinone) + 2H ⁺ + 2e ⁻ \rightleftharpoons $C_6H_4(OH)_2$	+0.699	0.696 in 1 M HCl, HClO ₄ , H ₂ SO ₄
$2\mathrm{CO}_2(g) + 2\mathrm{H}^+ + 2\mathrm{e}^- \rightleftharpoons \mathrm{H}_2\mathrm{C}_2\mathrm{O}_4$	-0.49	
Cerium		
$Ce^{4+} + e^{-} \rightleftharpoons Ce^{3+}$		+1.70 in 1 M HClO ₄ ; +1.61 in 1 M HNO ₃ ; 1.44 in
		$1 \text{ M H}_2 \text{SO}_4$
Chlorine		
$Cl_2(g) + 2e^{-} \rightleftharpoons 2Cl^{-}$	+1.359	
$HCIO + H' + e \rightleftharpoons \frac{1}{2}Cl_2(g) + H_2O$	+1.63	
$CIO_3 + 6H^2 + 5e \rightleftharpoons \frac{2}{2}CI_2(g) + 3H_2O$	+1.4/	
$Cr^{3+} \pm c^{-} \rightarrow Cr^{2+}$	-0 408	
$Cr + e \leftarrow Cr$ $Cr^{3+} + 3e^- \rightarrow Cr(e)$	-0.408	
$Cr_{\bullet}O_{\bullet}^{2-} + 14H^{+} + 6e^{-} \rightarrow 2Cr^{3+} + 7H_{\bullet}O$	+1 33	
Cobalt	1.55	
$\operatorname{Co}^{2+} + 2e^{-} \rightleftharpoons \operatorname{Co}(s)$	-0.277	
$Co^{3+} + e^{-} \rightleftharpoons Co^{2+}$	+1.808	
Copper		
$Cu^{2+} + 2e^{-} \rightleftharpoons Cu(s)$	+0.337	
$Cu^{2+} + e^{-} \rightleftharpoons Cu^{+}$	+0.153	
$Cu^+ + e^- \rightleftharpoons Cu(s)$	+0.521	
$Cu^{2+} + I^- + e^- \rightleftharpoons CuI(s)$	+0.86	
$\operatorname{CuI}(s) + e^{-} \rightleftharpoons \operatorname{Cu}(s) + I^{-}$	-0.185	

continues

Standard and Formal Electrode Potentials A-13

Half-Reaction	<i>E</i> °, V*	Formal Potential, V ⁺
Fluotine	,	
$F_{2}(a) + 2H^{+} + 2e^{-} \rightarrow 2HF(aa)$	+3.06	
Hvdtogen	1 9.00	
$2H^+ + 2e^- \Longrightarrow H_2(q)$	0.000	-0.005 in 1 M HCl, HClO
Iodine	0.000	01000 11 11 11 11 01,11 01 0 4
$I_2(s) + 2e^- \Longrightarrow 2I^-$	+0.5355	
$I_2(aq) + 2e^- \Longrightarrow 2I^-$	$+0.615^{\ddagger}$	
$I_3^- + 2e^- \Longrightarrow 3I^-$	+0.536	
$ICl_2^- + e^- \rightleftharpoons \frac{1}{2}I_2(s) + 2Cl^-$	+1.056	
$IO_3^- + 6H^+ + 5e^- \rightleftharpoons \frac{1}{2}I_2(s) + 3H_2O$	+1.196	
$IO_{3}^{-} + 6H^{+} + 5e^{-} \rightleftharpoons \frac{1}{2}I_{2}(aq) + 3H_{2}O$	$+1.178^{\ddagger}$	
$IO_3^- + 2CI^- + 6H^+ + 4e^- \rightleftharpoons ICI_2^- + 3H_2O$	+1.24	
$H_{5}IO_{6} + H^{+} + 2e^{-} \rightleftharpoons IO_{3}^{-} + 3H_{2}O$	+1.601	
Iron		
$Fe^{2+} + 2e^{-} \rightleftharpoons Fe(s)$	-0.440	
$Fe^{3+} + e^- \rightleftharpoons Fe^{2+}$	+0.771	0.700 in 1 M HCl; 0.732 in 1 M HClO ₄ ; 0.68 in 1 M H ₂ SO ₄
$\operatorname{Fe}(\operatorname{CN})_6^{3-} + e^- \rightleftharpoons \operatorname{Fe}(\operatorname{CN})_6^{4-}$	+0.36	0.71 in 1 M HCl; 0.72 in 1 M HClO ₄ , H ₂ SO ₄
Lead		
$Pb^{2+} + 2e^{-} \rightleftharpoons Ps(s)$	-0.126	-0.14 in 1 M HClO ₄ ; -0.29 in 1 M H ₂ SO ₄
$PbO_2(s) + 4H^+ + 2e^- \Longrightarrow Pb^{2+} + 2H_2O$	+1.455	
$PbSO_4(s) + 2e^- \rightleftharpoons Pb(s) + SO_4^{2-}$	-0.350	
Lithium		
$Li^+ + e^- \rightleftharpoons Li(s)$	-3.045	
Magnesium		
$Mg^{2+} + 2e^{-} \rightleftharpoons Mg(s)$	-2.363	
Manganese		
$Mn^{2+} + 2e^{-} \rightleftharpoons Mn(s)$	-1.180	
$Mn^{3+} + e^{-} \rightleftharpoons Mn^{2+}$		1.51 in 7.5 M H ₂ SO ₄
$MnO_2(s) + 4H^+ + 2e^- \rightleftharpoons Mn^{2+} + 2H_2O$	+1.23	
$MnO_4^- + 8H^+ + 5e^- \rightleftharpoons Mn^{2+} + 4H_2O$	+1.51	
$MnO_4^- + 4H^+ + 3e^- \rightleftharpoons MnO_2(s) + 2H_2O$	+1.695	
$MnO_4^- + e^- \rightleftharpoons MnO_4^{2-}$	+0.564	
Mercury		
$Hg_2^{2+} + 2e^{-} \rightleftharpoons 2Hg(l)$	+0.788	$0.274 \text{ in 1 M HCl}; 0.776 \text{ in 1 M HClO}_4; 0.674 \text{ in 1 M H}_2\text{SO}_4$
$2 Hg^{2+} + 2e^{-} \rightleftharpoons Hg_{2}^{2+}$	+0.920	0.907 in 1 M HClO ₄
$Hg^{2+} + 2e^{-} \rightleftharpoons Hg(l)$	+0.854	
$Hg_2Cl_2(s) + 2e \rightleftharpoons 2Hg(l) + 2Cl$	+0.268	0.244 in sat'd KCl; 0.282 in 1 M KCl; 0.334 in 0.1 M KCl
$Hg_2SO_4(s) + 2e \rightleftharpoons 2Hg(l) + SO_4^2$	+0.615	
Nickel $Ni^{2+} + 2 = Ni^{2}$	0.250	
$Ni^{-1} + 2e \rightleftharpoons Ni(s)$	-0.250	
N (r) + 5U ⁺ + $4r^{-} \rightarrow N$ U ⁺	-0.22	
$N_2(g) + 3H + 4e \leftarrow N_2H_5$ $HNO + H^+ + e^- \rightarrow NO(e) + HO$	-0.25	
$HNO_2 + H + e \leftarrow HO(g) + H_2O$ $NO_1^- + 3U^+ + 2a^- \rightarrow UNO_1^- + UO_1^-$	+1.00 ±0.04	0.02 in 1 M HNO
$NO_3 + 5H + 2e \leftarrow HNO_2 + H_2O$	+0.94	$0.92 \text{ In 1 M HINO}_3$
$H_{-}O_{-} + 2H^{+} + 2e^{-} \rightarrow 2H_{-}O$	+1.776	
$H_{0,-}^{-} + H_{0,-}^{-} + 2e^{-} \rightarrow 30H^{-}$	+0.88	
$\Omega_2 + \Pi_2 O + 2e \leftarrow 50 \Pi$ $\Omega_2 (a) + 4H^+ + 4e^- \rightarrow 2H \Omega$	+1 220	
$O_2(g) + 2H^+ + 2e^- \rightarrow H_2O_2$	+0.682	
$O_2(g) + 2H^2 + 2e^- \rightarrow O_2(g) + H_2O_2$	+2.07	
Palladium	2.07	
$Pd^{2+} + 2e^- \Longrightarrow Pd(s)$	+0.987	
14 120 - 14(5)	0.707	

continues

Half-Reaction	<i>E</i> °, V*	Formal Potential, V^{\dagger}
Platinum		
$PtCl_4^{2-} + 2e^- \rightleftharpoons Pt(s) + 4Cl^-$	+0.755	
$PtCl_6^{2-} + 2e^- \Longrightarrow PtCl_4^{2-} + 2Cl^-$	+0.68	
Potassium		
$K^+ + e^- \Longrightarrow K(s)$	-2.925	
Selenium		
$H_2SeO_2 + 4H^+ + 4e^- \Longrightarrow Se(s) + 3H_2O$	+0.740	
$\operatorname{SeO}_{2}^{2-} + 4\mathrm{H}^{+} + 2\mathrm{e}^{-} \Longrightarrow \mathrm{H}_{2}\operatorname{SeO}_{2} + \mathrm{H}_{2}\mathrm{O}_{2}$	+1.15	
Silver		
$A\sigma^+ + e^- \Longrightarrow A\sigma(s)$	+0.799	0.228 in 1 M HCl; 0.792 in 1 M HClO ₄ ; 0.77 in 1 M H ₂ SO ₄
$A\sigma Br(s) + e^- \Longrightarrow A\sigma(s) + Br^-$	+0.073	4, ,
$A\sigma Cl(s) + e^{-} \Longrightarrow A\sigma(s) + Cl^{-}$	+0.222	0.228 in 1 M KCl
$Ag(CN)_{2}^{-} + e^{-} \Longrightarrow Ag(s) + 2CN^{-}$	-0.31	
$Ag_2CrO_4(s) + 2e^- \Longrightarrow 2Ag(s) + CrO_4^{2-}$	+0.446	
$A\sigma I(s) + e^{-} \Longrightarrow A\sigma(s) + I^{-}$	-0.151	
$Ag(S_2O_2)_2^{3-} + e^- \Longrightarrow Ag(s) + 2S_2O_2^{2-}$	+0.017	
Sodium		
$Na^+ + e^- \rightarrow Na(s)$	-2.714	
Sulfut		
$S(s) + 2H^+ + 2e^- \rightarrow H_sS(q)$	+0.141	
$H_{2}SO_{2} + 4H^{+} + 4e^{-} \Longrightarrow S(s) + 3H_{2}O_{2}$	+0.450	
$SO_{4}^{2-} + 4H^{+} + 2e^{-} \Longrightarrow H_{2}SO_{4} + H_{2}O_{4}$	+0.172	
$S_{4}O_{2}^{2-} + 2e^{-} \Rightarrow 2S_{2}O_{2}^{2-}$	+0.08	
$S_2O_2^{2-} + 2e^- \Longrightarrow 2SO_4^{2-}$	+2.01	
Thallium		
$Tl^+ + e^- \Longrightarrow Tl(s)$	-0.336	-0.551 in 1 M HCl; -0.33 in 1 M HClO ₄ , H ₂ SO ₄
$Tl^{3+} + 2e^- \Longrightarrow Tl^+$	+1.25	0.77 in 1 M HCl
Tin		
$\operatorname{Sn}^{2+} + 2e^{-} \Longrightarrow \operatorname{Sn}(s)$	-0.136	-0.16 in 1 M HClO
$\operatorname{Sn}^{4+} + 2e^{-} \Longrightarrow \operatorname{Sn}^{2+}$	+0.154	0.14 in 1 M HCl
Titanium		
$Ti^{3+} + e^- \Longrightarrow Ti^{2+}$	-0.369	
$TiO^{2+} + 2H^+ + e^- \Longrightarrow Ti^{3+} + H_2O$	+0.099	0.04 in 1 M H ₂ SO ₄
Uranium		010 1 11 1 11 11 120 0 4
$UO_{2}^{2+} + 4H^{+} + 2e^{-} \rightarrow U^{4+} + 2H_{2}O$	+0.334	
Vanadium	. 0.001	
$V^{3+} + e^- \Longrightarrow V^{2+}$	-0.255	
$VO^{2+} + 2H^+ + e^- \Longrightarrow V^{3+} + H_2O$	+0.337	
$V(OH)_{4}^{+} + 2H^{+} + e^{-} \Longrightarrow VO^{2+} + 3H_{2}O$	+1.00	1.02 in 1 M HCl, HClO
Zinc		
$Zn^{2+} + 2e^{-} \Longrightarrow Zn(s)$	-0.763	
	01/05	

Appendix 2

Solubility Product Constants at $25^{\circ}C$

Compound	Formula	$K_{ m sp}$	Notes
Aluminum hydroxide	Al(OH) ₃	$3 imes 10^{-34}$	
Barium carbonate	BaCO ₃	$5.0 imes10^{-9}$	
Barium chromate	$BaCrO_4$	$2.1 imes10^{-10}$	
Barium hydroxide	$Ba(OH)_2 \cdot 8H_2O$	$3 imes 10^{-4}$	
Barium iodate	$Ba(IO_3)_2$	$1.57 imes10^{-9}$	
Barium oxalate	BaC_2O_4	$1 imes 10^{-6}$	
Barium sulfate	$BaSO_4$	$1.1 imes10^{-10}$	
Cadmium carbonate	CdCO ₃	$1.8 imes10^{-14}$	
Cadmium hydroxide	Cd(OH) ₂	$4.5 imes 10^{-15}$	
Cadmium oxalate	CdC_2O_4	$9 imes 10^{-8}$	
Cadmium sulfide	CdS	$1 imes 10^{-27}$	
Calcium carbonate	CaCO ₃	$4.5 imes10^{-9}$	Calcite
	CaCO ₃	$6.0 imes10^{-9}$	Aragonite
Calcium fluoride	CaF ₂	$3.9 imes 10^{-11}$	-
Calcium hydroxide	$Ca(OH)_2$	$6.5 imes 10^{-6}$	
Calcium oxalate	$CaC_2O_4 \cdot H_2O$	$1.7 imes10^{-9}$	
Calcium sulfate	$CaSO_4$	$2.4 imes10^{-5}$	
Cobalt(II) carbonate	CoCO ₃	$1.0 imes10^{-10}$	
Cobalt(II) hydroxide	Co(OH) ₂	$1.3 imes10^{-15}$	
Cobalt(II) sulfide	CoS	5×10^{-22}	α
	CoS	$3 imes 10^{-26}$	β
Copper(I) bromide	CuBr	$5 imes 10^{-9}$	
Copper(I) chloride	CuCl	$1.9 imes10^{-7}$	
Copper(I) hydroxide*	Cu ₂ O*	$2 imes 10^{-15}$	
Copper(I) iodide	CuI	1×10^{-12}	
Copper(I) thiocyanate	CuSCN	$4.0 imes10^{-14}$	
Copper(II) hydroxide	$Cu(OH)_2$	$4.8 imes10^{-20}$	
Copper(II) sulfide	CuS	$8 imes 10^{-37}$	
Iron(II) carbonate	FeCO ₃	$2.1 imes 10^{-11}$	
Iron(II) hydroxide	Fe(OH) ₂	$4.1 imes 10^{-15}$	
Iron(II) sulfide	FeS	$8 imes 10^{-19}$	
Iron(III) hydroxide	Fe(OH) ₃	$2 imes 10^{-39}$	
Lanthanum iodate	La(IO ₃) ₃	$1.0 imes10^{-11}$	
Lead carbonate	РЬСО3	$7.4 imes10^{-14}$	
Lead chloride	PbCl ₂	$1.7 imes 10^{-5}$	
Lead chromate	PbCrO ₄	$3 imes 10^{-13}$	
Lead hydroxide	РЬО†	$8 imes 10^{-16}$	Yellow
	PbO [†]	$5 imes 10^{-16}$	Red
Lead iodide	РЫ	$7.9 imes10^{-9}$	
Lead oxalate	PbC ₂ O ₄	$8.5 imes 10^{-9}$	$\mu = 0.05$
Lead sulfate	PbSO4	$1.6 imes10^{-8}$	
Lead sulfide	РЬЅ	$3 imes 10^{-28}$	
Magnesium ammonium phosphate	MgNH ₄ PO ₄	$3 imes 10^{-13}$	
Magnesium carbonate	MgCO ₃	$3.5 imes 10^{-8}$	
-	0 0		

continues

																					-		0.9	33				
	3 <u>/III</u>	He .003	10	Ne	0.18	18	Ar	9.95	36	ŗ	3.80	54	×e	31.3	86	R	22.0			Π	F	`	17	Ë.	26(L			
	۳Ľ	4			00 2		_	45 3		-	90 8	~		6.		-	.0 2			-	04	Ŷ	173.0	102	No 259.1			
		17/	6	<u> </u>	19.0	1	U	35.	ä	ß	79.	ŝ	_	126	80	∢	210				B0	3 6	68.9	101	Md 56.1			
		16/VI	8	0	16.00	16	S	32.07	34	Se	78.96	52	Te	127.6	84	Ъ	210.0	•			F	. <u>-</u>	.3 1	0	5			
		5/V	2	z	4.01	15	٩	0.97	33	As	4.92	51	sb	21.8	83	Ē	0.00				Se l	бШ	167	10	257 257			
		2			01 1	-		е 60	~	e	61 7	_		1 1	~	0	.2 2				67	ĥ	164.9	66	ES 252.1			
		14/	9		12.	-	S	28.	ŝ	G	72.	50	Ś	118	8		207			×	56	32	62.5	98	52.1			
		13/11	2	ш	10.81	13	A	26.98	31	Ga	69.72	49	<u>_</u>	114.8	81	F	204.4			p bloo		, a	3.9 1	2	× :			
								12	30	Zu	5.39	48	ខ	12.4	80	Нg	9.00			Π	u U	Ē	158	6	247 B			
								_			55 6	2	0	1 6.			.0 2				EA.	Gd	157.2	96	Cm 247.1			
								-	5	ပ	63.	4	∢	107	7	∢	197				63	ы В	52.0	95	Am 43.1			
								9	28	ž	58.65	46	Р	106.4	78	£	195.1				-	۰ E	0.4	4	n			
			1					6	27	ပိ	8.93	45	R	02.9	77	-	92.2	109 Jne			8	<u>ى</u>	9 150	6	<u>д 8</u>			
	-	н 1.001						_	9	e	85	4	n	1.1	9	s	0.2	ے 802			61	Pag	144.9	93	237.(
								Ĩ	2	<u> </u>	4 55.	4	8	10	~	0	2 19(<u>5</u>			e0	No No	144.2	92	U 238.0			
								-	25	ž	54.9	43	ř	.6.86	75	Re	186.	Un:				, -	0.9	5	1.0 1.0			
								9	24	ບັ	52.00	42	ŝ	95.94	74	3	83.8	Jnh Unh			Ļ	· Œ	1 14	σι	о 23 Р			
									e	~	.94	-	q	.91	e	æ	. 6.0	np (1		83	3°S	140.	6 1	Th 232.			
									~	_	8	4	2	2 92		-	5 18	~ <u>5</u>			57	, P	138.9	68 .	Ac 227.0		f block	
a)								4	22	F	47.8	40	Ž	91.2	72	Ŧ	178.					es		/	>	1 1	-	
able								в	21	ŝ	44.96	39	≻	88.91		3 _	2	Ac-		d bloc		thanid			nides			
lic T		2	4	Be	012	12	٨g	4.30	20	ся С	9.08	38	ې ک	7.62	56	3a	37.3	88 3a 26.0	ſ	Η		Lan			Acti			
riod			-		11 9.		2	39 2.			10 4(<u> </u>	17 8		~ ~	.9 1	2 2		sck								
Pe		٦	e		6.9	:	ž	22.5	19	¥	39.1	37	ž	85.4	55	ő	132	87 11 223		s bl								
he				2			С			4			<u>ء</u>			9		7										
F										þ	oi	19	d															