

FACULTY OF SCIENCE

MODULE CEM2B10 / CEM01B2 INTERMEDIATE ORGANIC CHEMISTRY

CAMPUS APK

NOVEMBER EXAM 2019

ASSESSOR Dr L den Drijver INTERNAL MODERATOR Prof HH Kinfe

DURATION: 3 HOURS MARKS: 82

DATE: 16 November 2019 NUMBER OF PAGES: 9

Instructions

- (1) The examination is out of 82 marks and you have 3 hours to complete it. No extra time will be given.
- (2) You can use a **pen** of any colour **except** RED AND GREEN to write your answers.
- (3) Read the whole question paper carefully before you start answering. You are allowed to start with any question, just clearly number it in your answer sheet.
- (4) This is a closed book examination. You are NOT allowed to have any book, memorandum, notes, paper, photographs, document or written/printed material other than the question paper and the answer books provided by the examiner/invigilator. If you need paper for rough work, an additional exam answer sheet will be given to you, which must be clearly labelled as rough work: not for marking, and handed in together with the question paper and all your answer books.

QUESTION 1 [4]

Give the Fischer projection formula of the compound below. Also give the absolute configuration (R/S) of all the stereocentres present in the molecule. (4)

QUESTION 2 [9]

Which product(s) would you expect to obtain from each of the following reactions? For each reaction, give the mechanism (S_N1 , S_N2 , E1 of E2) by which the product is formed. In each case, explain your choice.

(i)
$$KI$$
 $Acetone$?

(ii)
$$\frac{\text{NaOEt /EtOH}}{80^{\circ}\text{C}}$$
? (3)

(iii)
$$Br \xrightarrow{\overset{\square}{C}H_3} \qquad OH^-, 50^{\circ}C$$

$$CH_2COCH_3 \xrightarrow{CH_3OH} ?$$

$$CH_2CH_3 \qquad (3)$$

QUESTION 3 [15]

(a) Write full mechanisms (curved arrows) for the following reactions:

$$\begin{array}{c|c} OH & H_3PO_4 \\ \hline & \Delta & \end{array} ? \tag{5}$$

(b) Give the missing starting materials, reagents and products.

(i)
$$O_3, CH_2CI_2$$

$$CH_2 \longrightarrow ? + ?$$

$$Zn, HOAc$$
(2)

(ii) OH
$$H_3C$$
 CH_2 CH_2 CH_3 CH_2 CH_3 (2)

(iii)
$$? \qquad \frac{\mathsf{KOC}(\mathsf{CH}_3)_3}{\mathsf{CHCl}_3} \qquad \mathsf{Cl} \qquad \mathsf{Cl} \qquad \mathsf{(1)}$$

QUESTION 4 [8]

(a) An unknown alkene with formula C_7H_{12} undergoes oxidation in hot, acidic KMnO₄ to yield only the following product. What is the structure of the original alkene? (2)

(b) Dehydrohalogenation of meso-1,2-dibromo-1,2-diphenylethene by the action of sodium ethoxide in ethanol yields (E)-1-bromo-1,2-diphenylethene. Similar dehydrohalogenation of either of the enantiomeric forms of 1,2-dibromo-1,2-diphenylethane yields (Z)-1-bromo-1,2-diphenylethene. Provide an explanation for the results. (6)

QUESTION 5 [11]

Type of Proton	Chemical Shift (δ , ppm)	Type of Proton	Chemical Shift (δ, ppm)
1° Alkyl, RCH ₃	0.8-1.2	Alkyl bromide, RCH ₂ Br	3.4-3.6
2° Alkyl, RCH ₂ R	1.2-1.5	Alkyl chloride, RCH2Cl	3.6-3.8
3° Alkyl, R ₃ CH	1.4–1.8	Vinylic, R ₂ C=CH ₂	4.6-5.0
Allylic, R ₂ C=C-CH ₃	1.6–1.9	Vinylic, R ₂ C=CH	5.2–5.7
R Ketone, RCC H 3	2.1–2.6	R Aromatic, ArH	6.0-8.5
		Aldehyde, RCH	9.5–10.5
Benzylic, ArCH ₃	2.2-2.5	Ö	
Acetylenic, RC≡CH	2.5-3.1	Alcohol hydroxyl, ROH	0.5-6.0 ^a
Alkyl iodide, RCH ₂ I	3.1-3.3	Amino, R—NH ₂	1.0-5.0 ^a
Ether, ROCH ₂ R	3.3-3.9	Phenolic, ArOH	4.5-7.7 ^a
Alcohol, HOCH ₂ R	3.3-4.0	Carboxylic, RCOH	10–13 ^a

The chemical shifts of these protons vary in different solvents and with temperature and concentration.

- (a) Briefly explain how you might distinguish between 1-butyne and 2-butyne by comparing their

 1H-NMR spectra. (2)
- (b) Draw the structure for the compound that has the chemical formula C₄H₈O and shows one singlet, one triplet and one quartet in the proton NMR. (3)
- (c) Which one of the following best represents the predicted approximate chemical shift and coupling for the hydrogen(s) indicated with the arrow? (2)

- A) 1.10 ppm, singlet
- B) 2.10 ppm, triplet
- C) 3.40 ppm, triplet
- D) 4.5 ppm, singlet
- E) 5.3 ppm, doublet
- (d) How many chemically distinct ¹H NMR signals are there in the following compound?

(2)

COURSE: CEM2B10 / CEM01B2 - Intermediate Organic Chemistry

- B) 2
- C) 3
- D) 4
- E) 5
- (e) What is the structure of the compound in the following 1 H-NMR spectrum with the molecular formula $C_{6}H_{11}N$? In the IR spectrum you notice a stretch at about 2250 cm $^{-1}$. Relative integration is shown. (2)

QUESTION 6 [10]

(a) What feature would you expect to see in the ¹H NMR spectrum of B after subjecting A to the following reaction? (2)

- 1. There would be only 4 aromatic protons at low field.
- 2. The signal for the protons on the benzylic carbon would be a doublet.
- 3. The signal for the methyl protons would be a triplet.
- 4. The signal for the methyl protons would be a doublet.
- 5. The signal for the methyl protons would integrate for only 2 hydrogens.
- (b) What would be the major product of the following reaction sequence? (2)

- B) II
- C) III
- D) IV
- E) V
- (c) Give a mechanism for the radical polymerisation of ethylene. (6)

QUESTION 7 [9]

(a) Give the missing starting material, reagent or product for the following reactions:

(ii)
$$? \qquad \xrightarrow{CH_3MgBr} \qquad \qquad \qquad \\ H_3O^+ \qquad \qquad OH \qquad \qquad (2)$$

(b) Ethyl 2-methylpropylether can be prepared via 2 routes in a Williamson synthesis. Give the 2 routes, explain which one will be better **and** why. (5)

QUESTION 8 [16]

Show how you would prepare <u>any four</u> of the following compounds from the given starting materials. You are allowed to use any reagents.

(a) 1- butene from 2-butene.

(c) (\pm) -2,3-butanediol from 2-butyne.

REFERENCE TABLES

Table of Characteristic IR Absorptions

frequency, cm-1	bond	functional group
3640-3610 (s, sh)	O-H stretch, free hydroxyl	alcohols, phenols
3500-3200 (s,b)	O-H stretch, H-bonded	alcohols, phenols
3400-3250 (m)	N-H stretch	1°, 2° amines, amides
3300-2500 (m)	O-H stretch	carboxylic acids
3330-3270 (n, s)	-C≡C-H: C-H stretch	alkynes (terminal)
3100-3000 (s)	C-H stretch	aromatics
3100-3000 (m)	=C-H stretch	alkenes
3000-2850 (m)	C-H stretch	alkanes
2830-2695 (m)	H-C=O: C-H stretch	aldehydes
2260-2210 (v)	C≡N stretch	nitriles
2260-2100 (w)	-C≡C- stretch	alkynes
1760-1665 (s)	C=O stretch	carbonyls (general)
1760-1690 (s)	C=O stretch	carboxylic acids
1750-1735 (s)	C=O stretch	esters, saturated aliphatic
1740-1720 (s)	C=O stretch	aldehydes, saturated aliphatic
1730-1715 (s)	C=O stretch	α, β-unsaturated esters
1715 (s)	C=O stretch	ketones, saturated aliphatic
1710-1665 (s)	C=O stretch	α, β-unsaturated aldehydes, ketones
1680-1640 (m)	-C=C- stretch	alkenes
1650-1580 (m)	N-H bend	1° amines
1600-1585 (m)	C-C stretch (in-ring)	aromatics
1550-1475 (s)	N-O asymmetric stretch	nitro compounds
1500-1400 (m)	C-C stretch (in-ring)	aromatics
1470-1450 (m)	C-H bend	alkanes
1370-1350 (m)	C-H rock	alkanes
1360-1290 (m)	N-O symmetric stretch	nitro compounds
1335-1250 (s)	C-N stretch	aromatic amines
1320-1000 (s)	C-O stretch	alcohols, carboxylic acids, esters, ethers
1300-1150 (m)	C-H wag (-CH ₂ X)	alkyl halides
1250-1020 (m)	C-N stretch	aliphatic amines
1000-650 (s)	=C-H bend	alkenes
950-910 (m)	O-H bend	carboxylic acids
910-665 (s, b)	N-H wag	1°, 2° amines
900-675 (s)	С-Н "оор"	aromatics
850-550 (m)	C-Cl stretch	alkyl halides
725-720 (m)	C-H rock	alkanes
700-610 (b, s)	-C≡C-H: C-H bend	alkynes
690-515 (m)	C-Br stretch	alkyl halides

m-medium, w-weak, s-strong, n-narrow, b-broad, sh-sharp