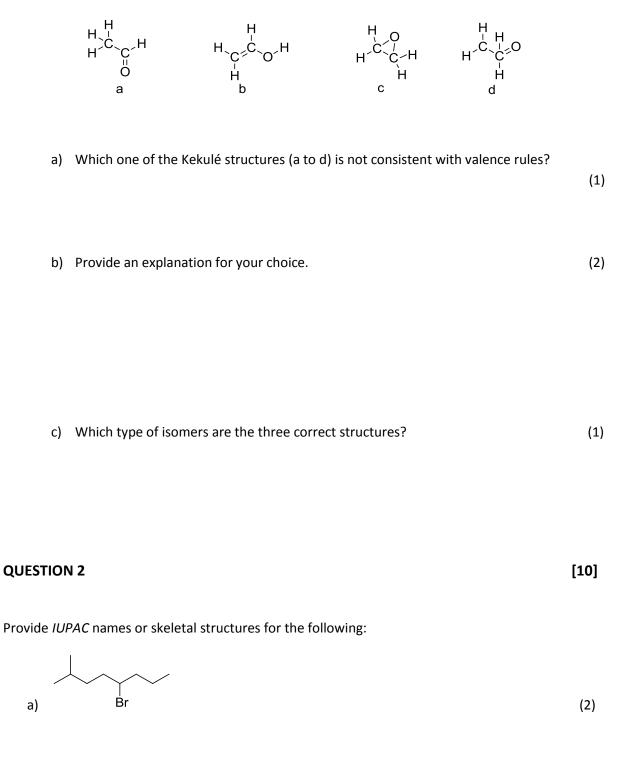


FACULTY OF SCIENCE

	DEPARTMENT OF CHEMICAL SCIENCES
MODULE:	CEM1B01 - INTRODUCTION TO PHYSICAL AND ORGANIC CHEMISTRY
SECTION:	B ORGANIC CHEMISTRY
CAMPUS:	АРК
EXAM DATE:	15 NOVEMBER 2019
ASSESSOR:	DR P MOSHAPO
MODERATOR:	PROF CM MAUMELA
MARKS:	50


INSTRUCTIONS:

- (1) The exam consists of 9 pages including cover page and periodic table.
- (2) You can use a pen of any color except RED to write the exam.
- (3) You are NOT ALLOWED TO USE PENCIL. IF YOU DO, YOU CANNOT QUERY YOUR MARKS AFTER THE EXAM HAS BEEN MARKED.

NAME:	SURNAME:

STUDENT NUMBER:_____

The molecular formula C_2H_4O can be converted into three line-bond (Kekulé) structures that are consistent with valence rules.

(2)

[4]

c) (E)-6-isopropyldec-7-en-2-yne

HO

ÇI

d)

e)

(2)

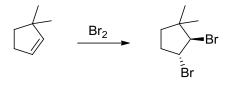
(2)

(2)

QUESTION 3

3.1 Draw one staggered and one eclipsed Newman projection of 3-bromo-2-methylpentane viewing along the C2 and C3 bond. (4)

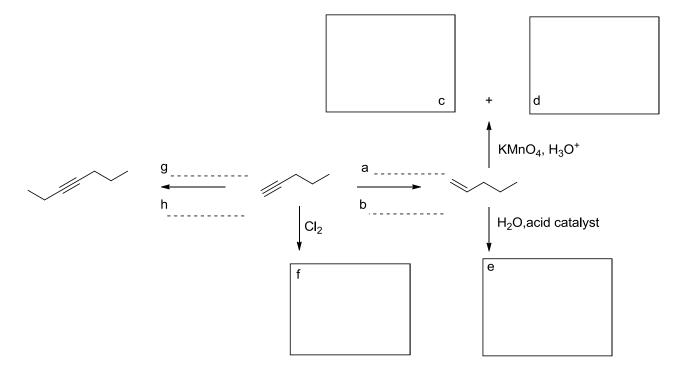
[6]


3.3 How many stereochemical isomers do you expect for this molecule? (1)

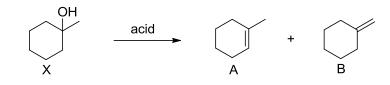
QUESTION 4

[6]

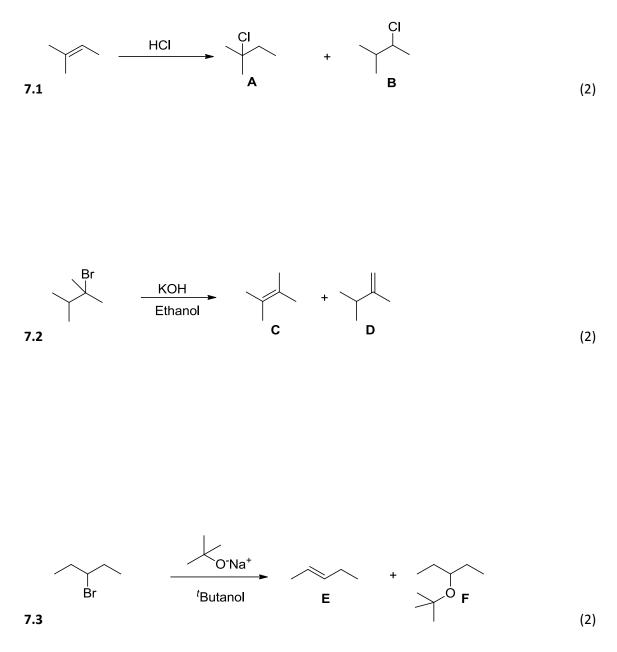
(1)


4.1 Write the complete stepwise mechanism for the following reaction. Show all the intermediate structure(s) and all electron flow with arrows. (3)

4.2 Propose a simple yet labelled energy diagram showing the reaction in 4.1. Assume that the reaction is exothermic. (3)

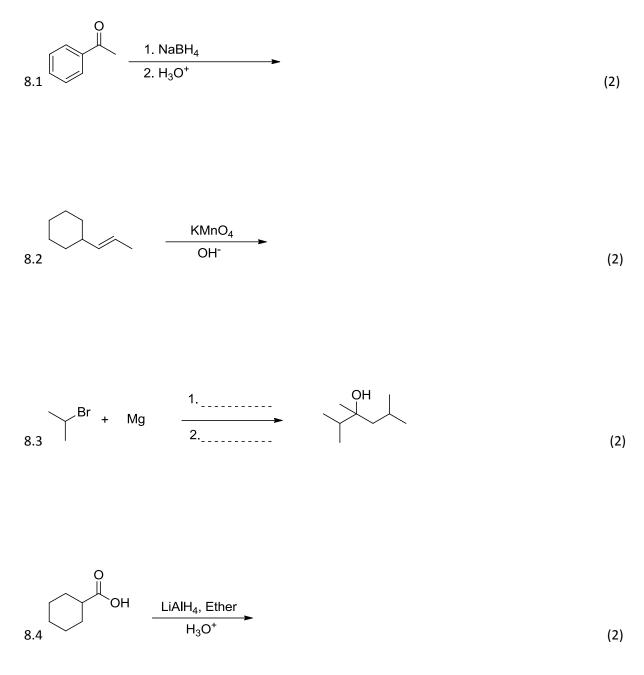

QUESTION 5

Alkynes are useful starting materials for the synthesis of different organic compounds. Study the scheme below and provide the names of all the missing reagents or product structures (a - h).



[7]

Compound X forms products A and B upon treatment with a strong acid. Propose a mechanism by which the products are formed.



Propose the major product in the reactions below and provide a reason for your choice.

Provide structures or names of the missing reagents or products for the reactions below

[8]

				~																			1	-			-	-		Г	٦	
	18/VIII	٩	30	0	e	.18	80	2	.95	. 9	5	.80	4	e	1.3	9	c	2.0				Γ		12	ב	175.0	103	5	260.1			
	18/	-	-	-		-			-	-		-				-	-							20	٩ ۲	173.0	102	°2	259.1			
			17/VII	-	ш	-	-			-		_	-			-								69	E	68.9	101	ρN	56.1			
			16/VI	8	0	16.00	16	S	32.07	34	Se	78.96	52	Te	127.6	84	Ъ	210.0						1	<u>ה</u>	-	-		-			
			15/V	7	z	14.01	15	٩	30.97	33	As	74.92	51	Sb	121.8	83	Ē	209.0								-		-	-			
			14/1/	9	ပ	12.01	14	Si	80.09	32	Ge	12.61	50	Sn	18.7	82	Pb	07.2						-	£	-			-			
				-	ш	-	-		1	-	-				-			-				p block		99	2	162.5	86	ັບ	252.			
			₽			10	3	_	-	-		-	-		-	-		-				pt		65	P L	158.9	97	¥	247.1			
										-	_	-	1.1		-		Hg	-						64	gd	157.2	96	E	247.1			
									11	29	ບີ	63.5	47	Ag	107.9	79	Au	197.(-	Ъ	+	-		-			
									10	28	ī	58.69	46	Pd	106.4	78	£	195.1						-		+	-		-			
	Г		80	1					6	27	ပိ	58.93	45	Rh	102.9	77	<u>-</u>	192.2	109	Une				-	mS u	+		-	-			
	Ľ	Ī	1.008						- 3	-		-	-		-	Y.	-	-	108	1.01		1		-	E a	+		-	-			
										1	-					-		-	107					99	PZ	144.2	92	⊃	238.0			
											1		-		-	-	-		-					29	2	140.9	91	Ра	231.0			
									-					-	-	-		-	106					58	e	40.1	60	Ч	32.0			
									G	23	>	50.94	41	qN	92.91	73	Ta	180.9	105	ц П					La	+			-		T DIOCK	
									4	22	F	47.88	40	Ņ	91.22	72	Ŧ	178.5	104	Dnq			μ			2			23	3		
able									e	21	Sc	44.96	39	≻	88.91	-0		2	Ac-	2	ſ	d block		/	Lanthanides			Actinides				
ne Periodic Table			2	4	Be	9.012	12	٨g	4.30	20	ca		38	s		56	Ba	37.3		Ha 226.0	1				Lant			Acti				
LI00			_	_		6.941 9.	-	Na	99 2.	6		39.10 4(-		55		32.9 13		. 0		s block										
T D			ċ		_	6.9	-		22	-	-	39	e	_	85	2	0	13	81	7 Z		sb										
ne					2			3			4		10	20			9			7												
											þ	j0	19	d																		

The Periodic Table

9