Faculty of Science

Principles of Biochemistry BIC1B01/BIC01B1 November Examination

DATE SESSION 08h30 – 11h30

EKSAMINAR Dr. I. Mwaba

MODERATOR Dr G. Koorsen

TIME 3 HOURS MARKS 80

The use of calculator is allowed.

QUESTION 1

- 1.1 Draw a hydrogen bond that forms between a water molecule and ammonia. (3)
- 1.2 Indicate on the structure above, the hydrogen bond donor, and the hydrogen bond acceptor. (2)
- 1.3 Derive the Henderson-Hasselbach equation. (5)

QUESTION 2

2.1 Draw the structures of the following amino acids:

A. Glycine (3)

B. Alanine (3)

2.2 Draw the dissociation reaction for the amino acid K. Find the relevant pKa values from the following table: (6)

Amino acid	pKa₁	pKa₂	pKa₃
Glycine	2.34	9.60	
Alanine	2.34	9.69	
Valine	2.32	9.62	
Leucine	2.36	9.60	
Isoleucine	2.36	9.60	
Methionine	2.28	9.21	
Proline	1.99	10.60	
Phenylalanine	1.83	9.13	
Tryptophan	2.83	9.39	
Asparagine	2.02	8.80	
Glutamine	2.17	9.13	
Serine	2.21	9.15	
Threonine	2.09	9.10	
Tyrosine	2.20	9.11	
Cysteine	1.96	8.18	
Aspartic acid	1.88	9.60	3.65
Glutamic acid	2.19	9.67	4.25
Lysine	2.18	8.95	10.53
Arginine	2.17	9.04	12.48
Histidine	1.82	9.17	6.00

- 2.3 What is the net charge of **K** at pH 3.
- 2.4 What is the pl of **K**. (1)

(1)

- Define the term native conformation. 2.5 (1)
- 2.6 Which reagent is required to break disulfide bonds? (1)

2.7	What makes fetal hemoglobin have a stronger affinity for oxygen than adult hemoglobin.	(3)
2.8	Describe the Bohr effect and how it regulates oxygen binding to hemoglobin.	(6)
	CTION 2	
	STION 3	
3.1	Draw the structure of deoxyadenosine monophosphate.	(5)
3.2	Describe in full, the structure of A-DNA	(5)
3.3	List 3 differences between eukaryotes and prokaryotes mRNA.	(3)
3.4	Draw the secondary structure of tRNA.	(3)
QUE	STION 4	
4.1	Draw the structure of arachidonic acid or $20:4\Delta^{5,8,11,14}$	(3)
4.2	What kind of omega-fatty acids is arachidonic acid?	(2)
4.3	Is Arachdonic acid a saturated or unsaturated fat?	(1)
4.4	Explain why Vitamin A is classified as a lipid molecule.	(2)
4.5	What is the general reaction process of saponification?	(4)
4.6	List 3 types/classes of lipids found in the plasma membrane.	(3)
QUE	STION 5	
5.1	Define "reducing sugar."	(2)
5.2	Explain why sucrose is not a reducing sugar, even though both glucose and fructose are.	(3)
5.3	Draw the structure (Fischer Projection) of simple aldo-pentose sugar.	(2)
5.4	Glycogen, starch and cellulose are all made of glucose molecules strung together. What makes	;
	these structures different?	(4)
5.5	How does the cyclization of sugars introduce a new chiral center? Use a detailed diagram of	
	glucose to answer the question.	(4)