

FACULTY OF SCIENCE

DEPARTMENT OF PURE AND APPLIED MATHEMATICS

SEQUENCES, SERIES AND VECTOR CALCULUS

MODULE

CAMPUS

ASME2A1

APK

SUPPLEMENTARY EXAM	M JANUARY 2020	
EXAMINER		MR M ASKES
NTERNAL MODERATOR		DR F SCHULZ
DURATION		2 HOURS
MARKS		50
SURNAME AND INITIALS		
DENTITY NUMBER		
NUMBER OF PAGES:	1 + 11	
NSTRUCTIONS:	1. ANSWER ALL QUESTIONS ON THE PAPER IN PEN 2. CALCULATORS ARE NOT ALLOWED	

3. INDICATE **CLEARLY** ANY ADDITIONAL WORKING OUT

Determine whether the following statements are true or false. If true, give a short justification. If false, give a counter example. [10]

(1.1) If $\{a_n\}$ is a divergent sequence, then $\{a_n^2\}$ is divergent. (2)

(1.2) If $\{a_n\}$ is a convergent sequence, then $\{\frac{1}{a_n}\}$ is convergent. (2)

(1.3) The ratio test can be used to determine whether $\sum_{n=0}^{\infty} \frac{1}{n!}$ converges. (2)

(1.4) If
$$a_n > 0$$
 and $\lim_{n \to \infty} (a_{n+1}/a_n) < 1$, then $\lim_{n \to \infty} a_n = 0$. (2)

(1.5) If
$$a_n > 0$$
 and $\sum a_n$ converges, then $\sum (-1)^n a_n$ converges. (2)

Show that the sequence defined by

$$a_1 = 1$$
 $a_{n+1} = 3 - \frac{1}{a_n}$ for $n \ge 1$

[4]

is increasing and bounded above by 3.

State and prove the alternating series test.

[6]

[5]

(4.1) Test whether

$$(3)$$

$$\sum_{n=1}^{\infty} \left(\frac{n^2 + 1}{2n^2 + 1} \right)^n$$

is absolutely convergent, conditionally convergent, or divergent.

$$\sum_{n=2}^{\infty} 2\left(\frac{1}{n} - \frac{1}{n+3}\right).$$

Find the radius and interval of convergence for

$$\sum_{n=0}^{\infty} (-1)^n \frac{(x-3)^n}{2n+1}.$$

[4]

Let k be any real number. Use the Maclaurin series of $(1+x)^k$ to obtain the Maclaurin series for [3]

$$f(x) = x^3 (1 + x^2)^k$$
.

Consider the curve with parametric equations $x = t^2$, y = 1 - 3t, $z = 1 + t^3$. Does the curve pass through the points (1, 4, 0), (9, -8, 28) and (4, 7, -6)? [3]

Show that if ${\bf r}$ is a vector function such that ${\bf r}''$ exists, then

$$\frac{d}{dt} \left[\mathbf{r}(t) \times \mathbf{r}'(t) \right] = \mathbf{r}(t) \times \mathbf{r}''(t).$$

[3]

Find the unit tangent vector, unit normal vector, and the curvature of the curve

$$\mathbf{r}(t) = \langle t, 3\cos(t), 3\sin(t) \rangle$$
.

[7]

Derive the formula [3]

$$\mathbf{a} = v'\mathbf{T} + \kappa v^2 \mathbf{N}.$$

Question 11

Determine whether the following statement is true or false. Give a short justification. [2]

The binormal vector is $\mathbf{B}(t) = \mathbf{N}(t) \times \mathbf{T}(t)$.