FACULTY OF SCIENCE

DEPARTMENT OF PURE AND APPLIED MATHEMATICS	
$\begin{array}{ll}\text { MODULE } & \text { ASME2A1 } \\ & \text { SEQUENCE }\end{array}$	ES AND VECTOR CALCULUS
CAMPUS APK	
SUPPLEMENTARY EXAM	JANUARY 2020
EXAMINER	MR M ASKES
INTERNAL MODERATOR	DR F SCHULZ
DURATION	2 HOURS
MARKS	50

SURNAME AND INITIALS \qquad

STUDENT NUMBER \qquad

IDENTITY NUMBER \qquad

NUMBER OF PAGES: $1+11$
INSTRUCTIONS:

1. ANSWER ALL QUESTIONS ON THE PAPER IN PEN
2. CALCULATORS ARE NOT ALLOWED
3. INDICATE CLEARLY ANY ADDITIONAL WORKING OUT

Question 1

Determine whether the following statements are true or false. If true, give a short justification. If false, give a counter example.
(1.1) If $\left\{a_{n}\right\}$ is a divergent sequence, then $\left\{a_{n}^{2}\right\}$ is divergent.
(1.2) If $\left\{a_{n}\right\}$ is a convergent sequence, then $\left\{\frac{1}{a_{n}}\right\}$ is convergent.
(1.3) The ratio test can be used to determine whether $\sum_{n=0}^{\infty} \frac{1}{n!}$ converges.
(1.4) If $a_{n}>0$ and $\lim _{n \rightarrow \infty}\left(a_{n+1} / a_{n}\right)<1$, then $\lim _{n \rightarrow \infty} a_{n}=0$.
(1.5) If $a_{n}>0$ and $\sum a_{n}$ converges, then $\sum(-1)^{n} a_{n}$ converges.

Question 2

Show that the sequence defined by

$$
a_{1}=1 \quad a_{n+1}=3-\frac{1}{a_{n}} \text { for } n \geq 1
$$

is increasing and bounded above by 3 .

Question 3

State and prove the alternating series test.
(4.1) Test whether

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{n^{2}+1}{2 n^{2}+1}\right)^{n} \tag{3}
\end{equation*}
$$

is absolutely convergent, conditionally convergent, or divergent.
(4.2) Find the (exact) sum of the series

$$
\begin{equation*}
\sum_{n=2}^{\infty} 2\left(\frac{1}{n}-\frac{1}{n+3}\right) \tag{2}
\end{equation*}
$$

Question 5

Find the radius and interval of convergence for

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{(x-3)^{n}}{2 n+1}
$$

Let k be any real number. Use the Maclaurin series of $(1+x)^{k}$ to obtain the Maclaurin series for [3]

$$
f(x)=x^{3}\left(1+x^{2}\right)^{k}
$$

Question 7

Consider the curve with parametric equations $x=t^{2}, y=1-3 t, z=1+t^{3}$. Does the curve pass through the points $(1,4,0),(9,-8,28)$ and $(4,7,-6)$?

Question 8

Show that if \mathbf{r} is a vector function such that $\mathbf{r}^{\prime \prime}$ exists, then

$$
\frac{d}{d t}\left[\mathbf{r}(t) \times \mathbf{r}^{\prime}(t)\right]=\mathbf{r}(t) \times \mathbf{r}^{\prime \prime}(t)
$$

Question 9

Find the unit tangent vector, unit normal vector, and the curvature of the curve

$$
\mathbf{r}(t)=\langle t, 3 \cos (t), 3 \sin (t)\rangle .
$$

Derive the formula

$$
\mathbf{a}=v^{\prime} \mathbf{T}+\kappa v^{2} \mathbf{N} .
$$

Question 11

Determine whether the following statement is true or false. Give a short justification.
The binormal vector is $\mathbf{B}(t)=\mathbf{N}(t) \times \mathbf{T}(t)$.

