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Question 1

Determine whether the following statements are true or false. If true, give a short justification. If
false, give a counter example. [10]

(1.1) If {an} is a divergent sequence, then {a2n} is divergent. (2)

(1.2) If {an} is a convergent sequence, then { 1
an
} is convergent. (2)

(1.3) The ratio test can be used to determine whether
∑∞

n=0
1
n!

converges. (2)
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(1.4) If an > 0 and limn→∞(an+1/an) < 1, then limn→∞ an = 0. (2)

(1.5) If an > 0 and
∑
an converges, then

∑
(−1)nan converges. (2)
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Question 2

Show that the sequence defined by [4]

a1 = 1 an+1 = 3− 1

an
for n ≥ 1

is increasing and bounded above by 3.
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Question 3

State and prove the alternating series test. [6]
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Question 4 [5]

(4.1) Test whether (3)

∞∑
n=1

(
n2 + 1

2n2 + 1

)n

is absolutely convergent, conditionally convergent, or divergent.

(4.2) Find the (exact) sum of the series (2)

∞∑
n=2

2

(
1

n
− 1

n+ 3

)
.
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Question 5

Find the radius and interval of convergence for [4]

∞∑
n=0

(−1)n
(x− 3)n

2n+ 1
.
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Question 6

Let k be any real number. Use the Maclaurin series of (1 + x)k to obtain the Maclaurin series for [3]

f(x) = x3
(
1 + x2

)k
.
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Question 7

Consider the curve with parametric equations x = t2, y = 1− 3t, z = 1 + t3. Does the curve pass
through the points (1, 4, 0), (9,−8, 28) and (4, 7,−6)? [3]
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Question 8

Show that if r is a vector function such that r′′ exists, then [3]

d

dt
[r(t)× r′(t)] = r(t)× r′′(t).
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Question 9

Find the unit tangent vector, unit normal vector, and the curvature of the curve [7]

r(t) = 〈t, 3 cos(t), 3 sin(t)〉 .
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Question 10

Derive the formula [3]

a = v′T + κv2N.

Question 11

Determine whether the following statement is true or false. Give a short justification. [2]

The binormal vector is B(t) = N(t)×T(t).
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