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Question 1

Determine whether the following statements are true or false. If true, give a short justification. If
false, give a counter example. [10]

(1.1) A sequence, {an}, is bounded if there exists a real number k such that

an < k

for all n ∈ N. (2)

(1.2) If limn→∞ an = 0, then
∑
an is convergent. (2)

(1.3) If {an} and {bn} are divergent, then {an + bn} is divergent. (2)
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(1.4) If
∑∞

n=1 an is convergent, then
∑∞

n=1 |an| is convergent. (2)

(1.5) If {an} is decreasing and an > 0 for all n ∈ N, then {an} is convergent. (2)
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Question 2

Determine whether the sequence defined as follows is convergent or divergent:

a1 = 1 an+1 = 4− an for n ≥ 1.

Then, what happens if the first term is a1 = 2? [4]
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Question 3

Suppose that
∑
an and

∑
bn are series with positive terms. Prove that if

∑
bn is divergent

and an ≥ bn for all n ∈ N , then
∑
an is also divergent. [3]
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Question 4 [5]

(4.1) Test whether (3)

∞∑
n=1

n100100n

n!

is absolutely convergent, conditionally convergent, or divergent.

(4.2) Find the sum of the series (2)

∞∑
n=0

(−1)n
(2π)2n

(2n)!
.
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Question 5

State the alternating series estimation theorem. [3]
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Question 6

Find the radius and interval of convergence for [4]

∞∑
n=1

(x+ 2)n

n4n
.
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Question 7

Use the Maclaurin series of cos(x) to obtain the Maclaurin series for [3]

f(x) = x cos

(
x2

2

)
.
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Question 8

At what points does the helix [3]

r(t) = 〈sin(t), cos(t), t〉

intersect the sphere x2 + y2 + z2 = 5?
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Question 9

Show that [3]

d

dt
[u (f(t))] = f ′(t)u′ (f(t)) .
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Question 10

Find the unit tangent vector, unit normal vector, and the curvature of the curve [7]

r(t) = 〈t, 3 cos(t), 3 sin(t)〉 .
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Question 11

Find the velocity, acceleration, and speed of a particle with the position function [3]

r(t) = 〈2 cos(t), 3t, 2 sin(t)〉.

Question 12

Determine whether the following statement is true or false. If true, give a short justification.
If false, give a counter example. [2]

Different parametrizations of the same curve result in identical tangent vectors at a given point
on the curve.
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