

FACULTY OF SCIENCE

DEPARTMENT OF PURE AND APPLIED MATHEMATICS		
MODULE	ASME2A1 SEQUENO	I CES, SERIES AND VECTOR CALCULUS
CAMPUS	ΑΡΚ	
EXAM	NOVEMB	ER 2019
EXAMINER		MR M ASKES
INTERNAL MODERATOR		DR F SCHULZ
DURATION		2 HOURS
MARKS		50
SURNAME ANI	DINITIALS	
STUDENT NUMBER		
IDENTITY NUMBER		
NUMBER OF	PAGES:	1 + 12
2. CALCULATORS ARE NOT ALLOWED		1. ANSWER ALL QUESTIONS ON THE PAPER IN PEN 2. CALCULATORS ARE NOT ALLOWED 3. INDICATE CLEARLY ANY ADDITIONAL WORKING OUT

Determine whether the following statements are true or false. If true, give a short justification. If false, give a counter example. [10]

(1.1) A sequence, $\{a_n\}$, is bounded if there exists a real number k such that

 $a_n < k$

for all $n \in \mathbb{N}$.

(1.2) If $\lim_{n\to\infty} a_n = 0$, then $\sum a_n$ is convergent.

(1.3) If $\{a_n\}$ and $\{b_n\}$ are divergent, then $\{a_n + b_n\}$ is divergent. (2)

(2)

(2)

(1.4) If $\sum_{n=1}^{\infty} a_n$ is convergent, then $\sum_{n=1}^{\infty} |a_n|$ is convergent. (2)

(1.5) If $\{a_n\}$ is decreasing and $a_n > 0$ for all $n \in \mathbb{N}$, then $\{a_n\}$ is convergent. (2)

Determine whether the sequence defined as follows is convergent or divergent:

$$a_1 = 1$$
 $a_{n+1} = 4 - a_n$ for $n \ge 1$.

Then, what happens if the first term is $a_1 = 2$?

Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms. Prove that if $\sum b_n$ is divergent and $a_n \ge b_n$ for all $n \in \mathbb{N}$, then $\sum a_n$ is also divergent. [3]

(4.1) Test whether

$$\sum_{n=1}^{\infty} \frac{n^{100} 100^n}{n!}$$

is absolutely convergent, conditionally convergent, or divergent.

(4.2) Find the sum of the series

$$\sum_{n=0}^{\infty} \left(-1\right)^n \frac{(2\pi)^{2n}}{(2n)!}.$$

[5]

(2)

State the alternating series estimation theorem.

[3]

Find the radius and interval of convergence for

$$\sum_{n=1}^{\infty} \frac{(x+2)^n}{n4^n}.$$

[4]

Use the Maclaurin series of $\cos(x)$ to obtain the Maclaurin series for

$$f(x) = x \cos\left(\frac{x^2}{2}\right).$$

At what points does the helix

$$\mathbf{r}(t) = \langle \sin(t), \cos(t), t \rangle$$

intersect the sphere $x^2 + y^2 + z^2 = 5$?

Show that

$$\frac{d}{dt}\left[\mathbf{u}\left(f(t)\right)\right] = f'(t)\mathbf{u}'\left(f(t)\right).$$

Find the unit tangent vector, unit normal vector, and the curvature of the curve

 $\mathbf{r}(t) = \langle t, 3\cos(t), 3\sin(t) \rangle \,.$

Find the velocity, acceleration, and speed of a particle with the position function

 $\mathbf{r}(t) = \langle 2\cos(t), 3t, 2\sin(t) \rangle.$

[3]

Question 12

Determine whether the following statement is true or false. If true, give a short justification. If false, give a counter example. [2]

Different parametrizations of the same curve result in identical tangent vectors at a given point on the curve.