FACULTY OF SCIENCE

DEPARTMENT OF PURE AND APPLIED MATHEMATICS	
MODULE	ASME2A1 SEQUENCES, SERIES AND VECTOR CALCULUS CAMPUS EXAM\quad APK
NOVEMBER 2019	

EXAMINER	MR M ASKES
INTERNAL MODERATOR	DR F SCHULZ
DURATION	2 HOURS
MARKS	50

SURNAME AND INITIALS \qquad

STUDENT NUMBER \qquad

IDENTITY NUMBER \qquad

NUMBER OF PAGES: $1+12$

INSTRUCTIONS:

1. ANSWER ALL QUESTIONS ON THE PAPER IN PEN
2. CALCULATORS ARE NOT ALLOWED
3. INDICATE CLEARLY ANY ADDITIONAL WORKING OUT

Question 1

Determine whether the following statements are true or false. If true, give a short justification. If false, give a counter example.
(1.1) A sequence, $\left\{a_{n}\right\}$, is bounded if there exists a real number k such that

$$
\begin{equation*}
a_{n}<k \tag{2}
\end{equation*}
$$

for all $n \in \mathbb{N}$.
(1.2) If $\lim _{n \rightarrow \infty} a_{n}=0$, then $\sum a_{n}$ is convergent.
(1.3) If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are divergent, then $\left\{a_{n}+b_{n}\right\}$ is divergent.
(1.4) If $\sum_{n=1}^{\infty} a_{n}$ is convergent, then $\sum_{n=1}^{\infty}\left|a_{n}\right|$ is convergent.
(1.5) If $\left\{a_{n}\right\}$ is decreasing and $a_{n}>0$ for all $n \in \mathbb{N}$, then $\left\{a_{n}\right\}$ is convergent.

Question 2

Determine whether the sequence defined as follows is convergent or divergent:

$$
a_{1}=1 \quad a_{n+1}=4-a_{n} \quad \text { for } n \geq 1 .
$$

Then, what happens if the first term is $a_{1}=2$?

Question 3

Suppose that $\sum a_{n}$ and $\sum b_{n}$ are series with positive terms. Prove that if $\sum b_{n}$ is divergent and $a_{n} \geq b_{n}$ for all $n \in \mathbb{N}$, then $\sum a_{n}$ is also divergent.
(4.1) Test whether

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{n^{100} 100^{n}}{n!} \tag{3}
\end{equation*}
$$

is absolutely convergent, conditionally convergent, or divergent.
(4.2) Find the sum of the series

$$
\begin{equation*}
\sum_{n=0}^{\infty}(-1)^{n} \frac{(2 \pi)^{2 n}}{(2 n)!} \tag{2}
\end{equation*}
$$

Question 5

State the alternating series estimation theorem.

Find the radius and interval of convergence for

$$
\sum_{n=1}^{\infty} \frac{(x+2)^{n}}{n 4^{n}}
$$

Question 7

Use the Maclaurin series of $\cos (x)$ to obtain the Maclaurin series for

$$
f(x)=x \cos \left(\frac{x^{2}}{2}\right)
$$

Question 8

At what points does the helix

$$
\mathbf{r}(t)=\langle\sin (t), \cos (t), t\rangle
$$

intersect the sphere $x^{2}+y^{2}+z^{2}=5$?

Question 9

Show that

$$
\frac{d}{d t}[\mathbf{u}(f(t))]=f^{\prime}(t) \mathbf{u}^{\prime}(f(t))
$$

Find the unit tangent vector, unit normal vector, and the curvature of the curve

$$
\mathbf{r}(t)=\langle t, 3 \cos (t), 3 \sin (t)\rangle .
$$

Question 11

Find the velocity, acceleration, and speed of a particle with the position function

$$
\mathbf{r}(t)=\langle 2 \cos (t), 3 t, 2 \sin (t)\rangle .
$$

Question 12

Determine whether the following statement is true or false. If true, give a short justification. If false, give a counter example.

Different parametrizations of the same curve result in identical tangent vectors at a given point on the curve.

