

FACULTY OF SCIENCE

DEPARTMENT OF PURE AND APPLIED MATHEMATICS

LINEAR ALGEBRA A ASMA2A2

SUPPLEMENTARY EXAMINATION 2019

DATE:	JANUARY 2020	
ASSESSOR:	C MARAIS	
MODERATOR:	G BRAATVEDT	
DURATION:	120 MINUTES	MARKS: 50
SURNAME AND INITIALS	3 :	
STUDENT NUMBER:		
CONTACT NUMBER:		
NUMBER OF PAGES:	9	
INSTRUCTIONS:	ANSWER ALL QUESTIONS IN PEN	

YOU MAY USE A CALCULATOR

GOOD LUCK!

SHOW NECESSARY WORKING AND CALCULATIONS

INDICATE IF YOU WANT WORK ON BLANK

USE THE BLANK PAGES FOR ROUGH WORK

PAGES TO BE MARKED

[5]

Question 1 - 5

Choose the correct option for the multiple choice questions below and write your answer in the table provided.

Question	<u>Answer</u>
1.	
2.	
3.	
4.	
5.	

- 1. Which of the following statements is true?
 - a) A scalar can be added to a vector.
 - b) It is possible for the norm of a vector to equal zero even though one of its components is non-zero.
 - c) The result of taking the dot product of two vectors is another vector.
 - d) A vector contains magnitude and direction while a scalar does not.
 - e) None of these.
- 2. The two vectors (-2,1) and (1,2) are
 - a) linearly dependent of each other.
 - b) orthonormal to each other.
 - c) orthogonal to each other.
 - d) pointing in the opposite direction of each other.
 - e) None of these.
- 3. If $\mathbf{r}(t) = (1,0) + t(-2,1)$ is the vector equation of a line in \mathbb{R}^2 , then (-1,1) is
 - a) not a point on the line.
 - b) a point on the line.
 - c) a vector parallel to the line.
 - d) a vector perpendicular to the line.
 - e) None of these.
- 4. Suppose \mathbf{u} and \mathbf{v} are vectors such that $||\mathbf{u} + \mathbf{v}|| = ||\mathbf{u}|| + ||\mathbf{v}||$ then
 - a) u and v are orthogonal.
 - b) **u** and **v** are parallel.
 - c) nothing can be said about \boldsymbol{u} and \boldsymbol{v} .
 - d) the sum of \mathbf{u} and \mathbf{v} is orthogonal to \mathbf{u} and \mathbf{v} .
 - e) None of these.
- 5. Consider the two lines with parametric equations as follows:

$$l_1$$
: $x = -2s + 1$, $y = s + 2$, $z = 2s + 1$

$$l_2$$
: $x = t + 1$, $y = -2t + 2$, $z = 2t + 1$

Which one of the following statements is correct?

- a) l_1 and l_2 intersect in a single point.
- b) l_1 and l_2 are perpendicular.
- c) l_1 and l_2 are parallel.
- d) l_1 and l_2 are not co-planar.
- e) None of these.

Question 6 - 8

Determine whether the following statements are true or false. If true, give a short justification. If false, give a counter example.

6. A linear system of three equations in two unknowns can be inconsistent.

7. A linear system with fewer equations than unknowns must have infinitely many solutions.

	[2]
TRUE	
FALSE	

8. If A is a square matrix such that A^2 is invertible, then A^3 is invertible.

	[2]
TRUE	
FALSE	

Question 9

Let $[A:\mathbf{b}]$ be the augmented matrix for a linear system $A\mathbf{x} = \mathbf{b}$ where A is a 3×3 matrix, and let $[R:\mathbf{d}]$ be the reduced row echelon from of $[A:\mathbf{b}]$. Suppose the general solution for the linear system is

$$\mathbf{x} = (4,0,0) + t(2,1,0) + s(5,0,1)$$
. Find R and \mathbf{d} .

Find a symmetric 2×2 matrix, A, such that $A \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$. [3]

Question 11

Let A be a 4×4 matrix with $\det(A) = -3$, k a scalar and E an elementary matrix resulting from multiplying row 2 of the identity matrix, I_2 , by -3 . Complete the following:

- $\det(kA^T) = \dots$ [1]
- b) $\det(EA^{-1}) = \dots$ [1]
- c) $\det(-E^{-1}) = \dots$ [1]

Question 12

Find all the values of a so that the vector $\mathbf{b} = (0, a, 2)$ can be written as a linear combination of $\mathbf{u} = (1, 2, 3)$ and $\mathbf{v} = (2, -1, 4).$ [3]

Let $\mathbf{u} = (u_1, u_2)$ and $\mathbf{v} = (v_1, v_2)$ be vectors in \mathbb{R}^2 . Given vector addition defined as $\mathbf{u} \oplus \mathbf{v} = (u_1 - v_1, u_2 - v_2)$ and the usual scalar multiplication, show that this does not define a vector space. [3]

Question 14

Let $W = \{ \mathbf{p} \in \mathcal{P}_3 : \mathbf{p}(0) = 1 \}$ be a subset of the vector space containing all polynomials of degree 3 or less. Show that W is not a subspace of \mathcal{P}_3 .

Given that \mathbf{u} , \mathbf{v} and \mathbf{w} form a linearly independent set, show that the set $\left\{\mathbf{u}+\mathbf{v}+\mathbf{w}, 3\mathbf{v}-\mathbf{w}, 2\mathbf{w}\right\}$ is linearly independent. [3]

Question 16

Let \mathcal{P}_2 be the vector space consisting of all polynomial of degree 2 or less. Consider $S = \{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3, \mathbf{p}_4\} \subset \mathcal{P}_2$ where $\mathbf{p}_1(x) = -1 + x + 2x^2$, $\mathbf{p}_2(x) = x + 3x^2$, $\mathbf{p}_3(x) = 1 + 2x + 8x^2$ and $\mathbf{p}_4(x) = 1 + x + x^2$.

a) Find a basis, B , for \mathcal{P}_2 consisting of vectors in S . [3]

[2]

b) For each vector in S that is not in B, find the coordinate vector with respect to the basis B.

Question 17

Let
$$B = \{(1,2),(3,4)\}$$
 and $C = \{(7,3),(4,2)\}$ be two bases for \mathbb{R}^2 . Find the change of basis matrix $P_{B\to C}$.

[2]

[1]

[2]

Question 18

Let
$$A = \begin{bmatrix} 0 & 1 & 2 & 2 \\ 0 & 3 & 8 & 7 \\ 0 & 0 & 4 & 2 \end{bmatrix}$$
.

a) Find the reduced row echelon form of \boldsymbol{A} .

b) Find a basis for the row space of A.

c) Find a basis for the null space of A.

Prove the following theorems:

a) If $S = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ is a basis for a vector space V, then every vector \mathbf{v} in V can be expressed in the form $\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + ... + c_n \mathbf{v}_n \text{ in exactly one way.}$ [3]

b) Let S be a nonempty set of vectors in a vector space V. If S is a linearly independent set and if \mathbf{v} is a vector in V that is outside of the span of S, then the set $S \cup \{\mathbf{v}\}$ that results by inserting \mathbf{v} into S is still linearly independent.[4]