FACULTY OF SCIENCE

DEPARTMENT OF PURE AND APPLIED MATHEMATICS

LINEAR ALGEBRA A
ASMA2A2
EXAMINATION 2019

DATE:
NOVEMBER 2019
SESSION: 8:30-10:30
ASSESSOR:
C MARAIS
MODERATOR: G BRAATVEDT
DURATION: 120 MINUTES
MARKS: 50

SURNAME AND INITIALS:

STUDENT NUMBER: \qquad

CONTACT NUMBER: \qquad

NUMBER OF PAGES:
INSTRUCTIONS:

9

ANSWER ALL QUESTIONS IN PEN
SHOW NECESSARY WORKING AND CALCULATIONS YOU MAY USE NOT A CALCULATOR USE THE BLANK PAGES FOR ROUGH WORK
INDICATE IF YOU WANT WORK ON BLANK PAGES TO BE MARKED
GOOD LUCK!

Question 1-5
Choose the correct option for the multiple choice questions below and write your answer in the table provided.
1.
2.
3.
4.
5.

1. Suppose $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$, then using cofactor expansion along the first row, we have
a) $\operatorname{det}(A)=a e i+a f h+b d i+b f g+c d h+c e g$
b) $\operatorname{det}(A)=a e i+a f h-b d i-b f g+c d h+c e g$
c) $\operatorname{det}(A)=a e i-a f h-b d i+b f g+c d h-c e g$
d) $\operatorname{det}(A)=a e i-a f h+b d i-b f g+c d h-c e g$
e) None of these
2. Suppose A is reduced to $\left[\begin{array}{ccc}1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 6\end{array}\right]$ by first subtracting 3 times row 2 from row 3 , then interchanging row 1 and row 2 , and then dividing row 3 by -5 . What is the determinant of A ?
a) -6
b) $6 / 5$
c) 30
d) $-6 / 5$
e) None of these.
3. Suppose $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$ such that $\operatorname{det}(A)=0$, then the linear system $A \mathbf{x}=\mathbf{b}$ can
a) only have no solutions.
b) only have infinitely many solutions.
c) only have a unique solution.
d) have no solutions or infinitely many solutions.
e) None of these.
4. Which of the following statements is correct for $n \times n$ matrices A and B ?
a) $\operatorname{det}\left(A^{-1}\right)=-\operatorname{det}(A)$
b) $\operatorname{det}\left(A^{-1}\right)=-\frac{1}{\operatorname{det}(A)}$
c) $\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$
d) $\operatorname{det}(3 A)=3 \operatorname{det}(A)$
e) None of these.
5. If A is a lower triangular matrix then
a) $\operatorname{det}(A)$ is the sum of the entries on the main diagonal.
b) $\operatorname{det}(A)=0$ if there is a zero entry on the main diagonal.
c) $\operatorname{det}(A)$ is the product of the non-zero entries of A.
d) None of these.

Question 6-8
Determine whether the following statements are true or false. Give a short justification if true or counter example when false.
6. If the augmented matrix of a linear system $A \mathbf{x}=\mathbf{b}$ is row equivalent to the identity matrix, then the system must be consistent.
7. If the system $A \mathbf{x}=\mathbf{b}$ has a unique solution for all \mathbf{b}, then A must be an invertible matrix.
8. If A and B are square matrices such that $A B=B$, then A is the identity matrix.

Question 9

Determine whether the lines $\mathbf{r}_{1}(t)=(1,1,1)+t(1,2,-1)$ and $\mathbf{r}_{2}(t)=(3,2,1)+t(-1,-5,3)$ are parallel, intersect, or neither.

Question 10
Suppose \mathbf{u} and \mathbf{v} are orthogonal vectors such that $\|\mathbf{u}\|=8$ and $\|\mathbf{v}\|=3$. Find $\|\mathbf{u}-2 \mathbf{v}\|$.

Question 11
Let U and W be subspaces of a vector space V. Show that the union, $U \bigcup W$, is not closed under vector addition. Hint: You may use the method of Proof by Contradiction.

Question 12
Consider \mathcal{M}_{22}, the vector space consisting of all 2×2 matrices and let $W=\left\{A \in \mathcal{M}_{22}: A=\left[\begin{array}{cc}a & b \\ c & -a\end{array}\right], a, b, c \in \mathbb{R}\right\}$.
a) Show that W is a subspace of \mathcal{M}_{22}.
b) What is the dimension of W ? Explain.

Question 13

Find the values of h for which the set of vectors, $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ are linearly independent where $\mathbf{v}_{1}=(1,0,0)$, $\mathbf{v}_{2}=(h, 1,-h)$ and $\mathbf{v}_{3}=(1,2 h, 3 h+1)$.

Question 14
Let \mathcal{P}_{3} be the vector space consisting of all polynomials of degree 3 or less. Consider $S=\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}, \mathbf{p}_{4}\right\} \subset \mathcal{P}_{3}$ where $\mathbf{p}_{1}(x)=1+3 x+2 x^{2}-x^{3}, \mathbf{p}_{2}(x)=x+x^{3}, \mathbf{p}_{3}(x)=x+x^{2}-x^{3}$ and $\mathbf{p}_{4}(x)=3+8 x+8 x^{3}$. Find a basis, B, for span (S) consisting of vectors in S.

Question 15

Let $B=\{(1,2),(3,4)\}$ and $C=\{(7,3),(4,2)\}$ be two bases for \mathbb{R}^{2} and let $\mathbf{v}=(1,0)$.
a) Find find the coordinate vectors $[\mathbf{v}]_{B}$ and $[\mathbf{v}]_{C}$.
b) Find the change of basis matrix $P_{B \rightarrow C}$.
c) Use the matrix in b) to compute $[\mathbf{v}]_{C}$ and compare your answer in a).

Question 16
Let $A=\left[\begin{array}{rrrr}1 & -1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & -1 & 0 & 0 \\ 0 & 2 & 2 & 2 \\ 0 & 0 & 0 & 0\end{array}\right]$.
a) Find the reduced row echelon form of A.
b) Find a basis for the column space of A.
c) Find a basis for the null space of A.

Question 17

Prove the following theorems:
a) A set S with two or more vectors is linearly dependent if and only if at least one of the vectors in S is expressible as a linear combination of the other vectors in S.
b) If \mathbf{v} is a vector in S that is expressible as a linear combination of other vectors in S, and if $S-\{\mathbf{v}\}$ denotes the set obtained by removing \mathbf{v} from S, then S and $S-\{\mathbf{v}\}$ span the same space.
[4]

