

FACULTY OF SCIENCE

DEPARTMENT OF PURE AND APPLIED MATHEMATICS

LINEAR ALGEBRA A ASMA2A2

EXAMINATION 2019

DATE:	NOVEMBER 2019

SESSION: 8:30 - 10:30

ASSESSOR: C MARAIS

MODERATOR: G BRAATVEDT

DURATION: 120 MINUTES

MARKS: 50

SURNAME AND INITIALS:.....

STUDENT NUMBER:.....

CONTACT NUMBER:.....

NUMBER OF PAGES: 9

INSTRUCTIONS:

ANSWER ALL QUESTIONS IN PEN SHOW NECESSARY WORKING AND CALCULATIONS YOU MAY USE NOT A CALCULATOR USE THE BLANK PAGES FOR ROUGH WORK INDICATE IF YOU WANT WORK ON BLANK PAGES TO BE MARKED GOOD LUCK!

[5]

Question 1 - 5

Choose the correct option for the multiple choice questions below and write your answer in the table provided.

Question	Answer
1.	
2.	
3.	
4.	
5.	

1. Suppose $A = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix}$, then using cofactor expansion along the first row, we have

- a) det(A) = aei + afh + bdi + bfg + cdh + ceg
- b) det(A) = aei + afh bdi bfg + cdh + ceg
- c) det(A) = aei afh bdi + bfg + cdh ceg
- d) det(A) = aei afh + bdi bfg + cdh ceg
- e) None of these.

2. Suppose *A* is reduced to $\begin{vmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 6 \end{vmatrix}$ by first subtracting 3 times row 2 from row 3, then interchanging row 1

and row 2, and then dividing row 3 by -5. What is the determinant of A?

a)
$$-6$$
 b) $6/5$ c) 30 d) $-6/5$ e) None of these.
3. Suppose $A = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$ such that $\det(A) = 0$, then the linear system $A\mathbf{x} = \mathbf{b}$ can

a) only have no solutions.

b) only have infinitely many solutions.

g h i

- c) only have a unique solution.
- d) have no solutions or infinitely many solutions.
- e) None of these.
- 4. Which of the following statements is correct for $n \times n$ matrices A and B?

a)
$$\det(A^{-1}) = -\det(A)$$

b) $\det(A^{-1}) = -\frac{1}{\det(A)}$

c)
$$\det(A+B) = \det(A) + \det(B)$$

d)
$$det(3A) = 3det(A)$$

e) None of these.

5. If A is a lower triangular matrix then

- a) det(A) is the sum of the entries on the main diagonal.
- b) det(A) = 0 if there is a zero entry on the main diagonal.
- c) det(A) is the product of the non-zero entries of A.
- d) None of these.

Question 6 - 8

Determine whether the following statements are true or false. Give a short justification if true or counter example when false.

6. If the augmented matrix of a linear system $A\mathbf{x} = \mathbf{b}$ is row equivalent to the identity matrix, then the system must be consistent.

1	[2]
TRUE	
FALSE	

7. If the system $A\mathbf{x} = \mathbf{b}$ has a unique solution for all \mathbf{b} , then A must be an invertible matrix.

	[2]
TRUE	
FALSE	

8. If *A* and *B* are square matrices such that AB = B, then *A* is the identity matrix. [2] TRUE FALSE

Question 9

Determine whether the lines $\mathbf{r}_1(t) = (1,1,1) + t(1,2,-1)$ and $\mathbf{r}_2(t) = (3,2,1) + t(-1,-5,3)$ are parallel, intersect, or neither.

[3]

ASMA2A2 EXAMINATION Question 10 Suppose **u** and **v** are orthogonal vectors such that $||\mathbf{u}|| = 8$ and $||\mathbf{v}|| = 3$. Find $||\mathbf{u} - 2\mathbf{v}||$. [3]

Question 11

Let U and W be subspaces of a vector space V. Show that the union, $U \bigcup W$, is not closed under vector addition. Hint: You may use the method of Proof by Contradiction. [3]

Question 12

Consider \mathcal{M}_{22} , the vector space consisting of all 2×2 matrices and let $W = \left\{ A \in \mathcal{M}_{22} : A = \begin{bmatrix} a & b \\ c & -a \end{bmatrix}, a, b, c \in \mathbb{R} \right\}$. a) Show that W is a subspace of \mathcal{M}_{22} .

b) What is the dimension of W? Explain.

Question 13

Find the values of *h* for which the set of vectors, $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ are linearly independent where $\mathbf{v}_1 = (1,0,0)$, $\mathbf{v}_2 = (h,1,-h)$ and $\mathbf{v}_3 = (1,2h,3h+1)$.

[2]

Question 14

Let \mathcal{P}_3 be the vector space consisting of all polynomials of degree 3 or less. Consider $S = \{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3, \mathbf{p}_4\} \subset \mathcal{P}_3$ where $\mathbf{p}_1(x) = 1 + 3x + 2x^2 - x^3$, $\mathbf{p}_2(x) = x + x^3$, $\mathbf{p}_3(x) = x + x^2 - x^3$ and $\mathbf{p}_4(x) = 3 + 8x + 8x^3$. Find a basis, B, for span(S) consisting of vectors in S. [3]

<u>Question 15</u> Let $B = \{(1,2), (3,4)\}$ and $C = \{(7,3), (4,2)\}$ be two bases for \mathbb{R}^2 and let $\mathbf{v} = (1,0)$. a) Find find the coordinate vectors $[\mathbf{v}]_B$ and $[\mathbf{v}]_C$.

[3]

[2]

[1]

c) Use the matrix in b) to compute $\begin{bmatrix} \mathbf{v} \end{bmatrix}_C$ and compare your answer in a).

Question 16

Let $A =$	1	-1	0	0]		
	0	1	1	1			
	1	-1 2	0	0	.		
	0	2	2	2			
	0	0	0	0			

a) Find the reduced row echelon form of A.

[2]

b) Find a basis for the column space of A.

[2]

c) Find a basis for the null space of A.

Question 17

Prove the following theorems: a) A set S with two or more vectors is linearly dependent if and only if at least one of the vectors in S is expressible as a linear combination of the other vectors in \hat{S} . [4]

EXAMINATION

b) If \mathbf{v} is a vector in S that is expressible as a linear combination of other vectors in S, and if $S - \{\mathbf{v}\}$ denotes the set obtained by removing \mathbf{v} from S, then S and $S - \{\mathbf{v}\}$ span the same space. [4]