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ASMA2A2 EXAMINATION

Question 1 - 5
Choose the correct option for the multiple choice questions below and write your answer in the table provided.                [5]

1. Suppose , then using cofactor expansion along the first row, we have

a)
b)
c)
d)
e) None of these.

2. Suppose  is reduced to  by first subtracting 3 times row 2 from row 3, then interchanging row 1 

and row 2, and then dividing row 3 by . What is the determinant of ?  

a)                         b)                          c)                          d)                         e) None of these.

3. Suppose  such that , then the linear system  can

a) only have no solutions.
b) only have infinitely many solutions.
c) only have a unique solution.
d) have no solutions or infinitely many solutions.
e) None of these.

4. Which of the following statements is correct for  matrices  and ?
a)

b)

c)

d)
e) None of these.

5. If  is a lower triangular matrix then
a)  is the sum of the entries on the main diagonal.
b)  if there is a zero entry on the main diagonal.
c)  is the product of the non-zero entries of .
d) None of these.

Question Answer

1.

2.

3.

4.

5.

A =
a b c
d e f
g h i

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

det A( ) = aei + afh+ bdi + bfg + cdh+ ceg
det A( ) = aei + afh− bdi − bfg + cdh+ ceg
det A( ) = aei − afh− bdi + bfg + cdh− ceg
det A( ) = aei − afh+ bdi − bfg + cdh− ceg

A
1 −1  1
0  1 −1
0  0  6

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−5 A

−6 6 / 5 30 −6 / 5

A =
a b c
d e f
g h i

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

det A( ) = 0 Ax = b

n× n A B
det A−1( ) = −det A( )
det A−1( ) = − 1

det A( )
det A+ B( ) = det A( )+ det B( )
det 3A( ) = 3det A( )

A
det A( )
det A( ) = 0
det A( ) A
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ASMA2A2 EXAMINATION

Question 6 - 8
Determine whether the following statements are true or false. Give a short justification if true or counter example when 
false.
6. If the augmented matrix of a linear system  is row equivalent to the identity matrix, then the system must be 

consistent.                                                                                                                                                                       [2]

7. If the system  has a unique solution for all , then  must be an invertible matrix.                                       [2]

8. If  and  are square matrices such that , then  is the identity matrix.                                                    [2]

Question 9
Determine whether the lines   and   are parallel, intersect, or 
neither.                                                                                                                                                                                   [3]

Ax = b

TRUE

FALSE

Ax = b b A
TRUE

FALSE

A B AB = B A
TRUE

FALSE

r1 t( ) = 1,1,1( )+ t 1,2,−1( ) r2 t( ) = 3,2,1( )+ t −1,−5,3( )
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ASMA2A2 EXAMINATION

Question 10
Suppose  and  are orthogonal vectors such that  and . Find .                                                [3]

Question 11
Let  and  be subspaces of a vector space . Show that the union, , is not closed under vector addition. 
Hint: You may use the method of Proof by Contradiction.                                                                                                     [3]

u v u = 8 v = 3 u− 2v

U W V U ∪W
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ASMA2A2 EXAMINATION

Question 12

Consider , the vector space consisting of all  matrices and let .

a) Show that  is a subspace of .                                                                                                                             [3]

b) What is the dimension of  Explain.                                                                                                                          [2]

Question 13
Find the values of  for which the set of vectors,  are linearly independent where , 

 and .                                                                                                                               [3]

M22 2× 2 W = A∈M22 : A =
a  b
c −a

⎡

⎣
⎢

⎤

⎦
⎥ ,  a,b,c∈!

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
W M22

W ?

h v1,v2 ,v3{ } v1 = 1,0,0( )
v2 = h,1,−h( ) v3 = 1,2h,3h+1( )
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ASMA2A2 EXAMINATION

Question 14
Let  be the vector space consisting of all polynomials of degree 3 or less. Consider  where

, ,  and . Find a basis, , for 

 consisting of vectors in .                                                                                                                                   [3]

Question 15
Let  and  be two bases for  and let .

a) Find find the coordinate vectors  and .                                                                                                        [3]

P3 S = p1,p2 ,p3,p4{ }⊂ P3
p1 x( ) = 1+ 3x + 2x2 − x3 p2 x( ) = x + x3 p3 x( ) = x + x2 − x3 p4 x( ) = 3+8x +8x3 B

span S( ) S

B = 1,2( ), 3,4( ){ } C = 7,3( ), 4,2( ){ } !2 v = 1,0( )
v⎡⎣ ⎤⎦B v⎡⎣ ⎤⎦C
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ASMA2A2 EXAMINATION

b) Find the change of basis matrix .                                                                                                                          [2]

c) Use the matrix in b) to compute  and compare your answer in a).                                                                       [1]

Question 16

Let .

a) Find the reduced row echelon form of .                                                                                                                      [2]

PB→C

v⎡⎣ ⎤⎦C

A =

1 −1 0 0
0  1 1 1
1 −1 0 0
0  2 2 2
0  0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

A
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ASMA2A2 EXAMINATION

b) Find a basis for the column space of .                                                                                                                        [1]

c) Find a basis for the null space of .                                                                                                                              [2]

Question 17
Prove the following theorems:
a) A set  with two or more vectors is linearly dependent if and only if at least one of the vectors in  is expressible as a 

linear combination of the other vectors in .                                                                                                                 [4]

A

A

S S
S
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ASMA2A2 EXAMINATION

b) If  is a vector in  that is expressible as a linear combination of other vectors in , and if  denotes the 

set obtained by removing  from , then  and  span the same space.                                                             
[4] 

v S S S − v{ }
v S S S − v{ }
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